
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 4, NO. 3, SEPTEMBER 2017 523

Optimal k-Leader Selection for Coherence and
Convergence Rate in One-Dimensional Networks

Stacy Patterson, Member, IEEE, Neil McGlohon, and Kirill Dyagilev

Abstract—We study the problem of optimal leader selection in
consensus networks under two performance measures: 1) forma-
tion coherence when subject to additive perturbations, as quanti-
fied by the steady-state variance of the deviation from the desired
trajectory, and 2) convergence rate to a consensus value. The
objective is to identify the set of k leaders that optimizes the chosen
performance measure. In both cases, an optimal leader set can
be found by an exhaustive search over all possible leader sets;
however, this approach is not scalable to large networks. In recent
years, several works have proposed approximation algorithms to
the k-leader selection problem, yet the question of whether there
exists an efficient, noncombinatorial method to identify the opti-
mal leader set remains open. This work takes a first step toward
answering this question. We show that, in 1-D weighted graphs,
namely, path graphs and ring graphs, the k-leader selection prob-
lem can be solved in polynomial time (in k and the network size n).
We give an O(n3) solution for optimal k-leader selection in path
graphs and an O(kn3) solution for optimal k-leader selection in
ring graphs.

Index Terms—Consensus algorithms, dynamic networks, leader-
follower system.

I. INTRODUCTION

W E Explore the problem of leader selection in leader-
follower consensus systems. Such systems arise in the

context of vehicle formation control [1], distributed clock syn-
chronization [2], and distributed localization in sensor networks
[3], among others. In these systems, several agents act as
leaders whose state trajectory serves as the reference for the
entire system. These leaders may be controlled autonomously
or by a system owner. The remaining agents are followers. Each
follower updates its state based on relative measurements of the
states of its neighbors. The objective of the leader-follower sys-
tem is for the entire formation to maintain a desired global state.

We consider leader selection under two different dynamics.
In the first, which we call noisy formation dynamics, the fol-
lower agents’ measurements are corrupted by stochastic noise.
With these additive perturbations, the agents cannot maintain

Manuscript received May 19, 2015; revised August 19, 2015 and
November 22, 2015; accepted January 6, 2016. Date of publication January 21,
2016; date of current version September 15, 2017. Recommended by Associate
Editor K. H. Johansson.

S. Patterson and N. McGlohon are with the Department of Computer Science,
Rensselaer Polytechnic Institute, Troy, NY 12180 USA (e-mail: sep@cs.rpi.
edu; mcglon@rpi.edu).

K. Dyagilev is with the Department of Computer Science, Johns Hopkins
University, Baltimore, MD 21218 USA (e-mail: kirilld@cs.jhu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCNS.2016.2520201

the formation exactly; however, the steady-state variance of
the deviation of the agents’ states from the desired states is
bounded [4]. This variance is related to the coherence of the
formation and is quantified by an H2-norm of the leader-
follower system [5], [6]. It has been shown that the coherence
depends on which agents act as leaders [4], [5], and so, by
judiciously choosing the leader set, one can minimize the total
variance of the formation. The k-leader selection problem for
coherence is precisely to select a set of, at most, k leaders that
minimize this total variance. The second dynamics we consider
are consensus dynamics. In this case, the leaders all share the
same target value, and the followers’ relative measurements
are exact. Under these dynamics, the network topology and the
choice of the leader set determine the convergence rate. The
k-leader selection problem for fast convergence is to, given a
consensus network, select a set of, at most, k leaders so that the
convergence rate is maximized. Both leader selection problems
can be solved by an exhaustive search over all subsets of agents
of size at most k, but this approach is not tractable in large
networks for anything other than small values of k.

The leader selection problem for coherence has received a
great deal of attention in recent years. In [7], the authors show
that the total variance of the deviation from the desired trajec-
tory is a super-modular set function [8]. This super-modularity
property implies that one can use a greedy, polynomial-time
algorithm to find a leader set for which the coherence is within
a provable bound of optimal. In [9], the authors give algorithms
that yield lower and upper bounds on coherence of the optimal
leader set. Another recent work [10] has shown a connection
between the optimal leader set for coherence and information
centrality measures. They have used this connection to give
efficient algorithms for finding the optimal single leader and
optimal pair of leaders in several network topologies.

With respect to the convergence rate in leader-follower con-
sensus networks, recent works have characterized this conver-
gence rate in terms of the spectrum of a weighted Laplacian
matrix [11]–[13]. Several works have developed bounds for
the convergence rate based on the network topology [13]–[15].
Finally, the leader selection problem for fast convergence has
been studied in [15] and [16]. In these works, the authors
propose relaxations of the leader selection problem that can
be solved efficiently. While these relaxed formulations perform
well in evaluations, there are no guarantee on the optimality of
their solutions.

Despite this recent interest in leader selection problems, the
question of whether it is possible to find an optimal leader set
for coherence or convergence rate using a noncombinatorial

2325-5870 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Authorized licensed use limited to: IBM. Downloaded on September 26,2024 at 16:49:26 UTC from IEEE Xplore. Restrictions apply.

524 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 4, NO. 3, SEPTEMBER 2017

approach remains open. In this paper, we take a first step toward
answering this question. We show that, in 1-D weighted graphs,
specifically, path graphs and ring graphs, the k-leader selection
problems for coherence and fast convergence can be solved in
time, that is, polynomial in k and the network size n. For the
coherence problem, we transform the leader selection problem
into a problem of finding a minimum-weight path in a weighted
directed graph, a problem that can be solved in polynomial
time. We then use a slightly modified version of the well-known
Bellman-Ford algorithm [17] to find this minimum-weight path
and, thus, the optimal leader set. For the fast convergence prob-
lem, we transform the problem into a task of finding the widest
path in a weighted directed graph. A version of the Bellman-
Ford algorithm can then be used to find the optimal leader set
for fast convergence in polynomial time. For path graphs, our
algorithms find the optimal leader set of size at most k in O(n3)
time. In ring graphs, our algorithms find the optimal leader set
of size at most k in O(kn3) time. Our algorithm for optimal
k-leader selection for coherence first appeared in [18]. This
paper extends our previous work to the leader selection problem
for fast convergence.

The proposed algorithms have applications in 1-D leader-
follower networks, such as perimeter patrolling, where a ring
of autonomous agents encircles a hazard, such as a fire or an oil
spill to monitor its location and conditions [19], [20]. In these
applications, a system operator may issue commands to leaders
to change the velocity of the patrol or the distance from the
hazard for example. Other relevant applications include on-road
and underwater 1-D vehicular platoons [21], [22], where leader
vehicles may dictate the platoon trajectory.

Our work was inspired by recent work on network facility
location [23]. In network facility location, the objective is to
identify a subset of nodes to serve as facilities that minimize a
function of the network distances between the remaining nodes
and their closest facility nodes. In leader selection, the perfor-
mance of the network for a given leader set also depends on
the locations of the follower nodes with respect to the leaders,
though in a different way than in a classical facility location.
Our algorithms use a similar approach to the facility location
algorithm for a real line that was presented in [24], where the
authors solve the facility location problem by reducing it to a
minimum-weight path problem over a directed acyclic graph.
We note that our graph construction and our path-finding algo-
rithm are both significantly different from those in [24]. Nev-
ertheless, this shows that it is possible to exploit connections
between facility location and leader selection. We anticipate
that this connection can be used to develop efficient leader
selection algorithms for other network topologies that have effi-
cient facility location algorithms, for example, tree graphs [25].

The remainder of this paper is organized as follows. In
Section II, we present the system model and k-leader selection
problems. In Section III, we present our algorithms for finding
the optimal leader set for coherence in path and ring graphs. In
Section IV, we present our algorithms for finding the optimal
leader set for fast convergence in path and ring graphs. Section V
gives numerical examples comparing the optimal leader set to
the leader set selected by a greedy algorithm. Finally, we con-
clude in Section VI.

II. PROBLEM FORMULATION

In this section, we describe the dynamics of the leader-follower
systems and formally define the k-leader selection problems.

A. System Model

We consider a network of agents, modeled by a directed, con-
nected graph G=(V,E), where the node set V = {1, 2, . . . , n}
represents the agents. We use the terms “node” and “agent”
interchangeably. The edge set E represents the communication
structure. We assume that if (i, j) ∈ E, then (j, i) ∈ E; in this
case, i and j can exchange information. We denote the neighbor

set of a node i byN(i), that is, N(i)
Δ
={j∈V |(i, j)∈E}. In this

work, we restrict our study to 1-D graphs, namely, path graphs
and ring graphs. Without loss of generality, for path graphs, we
assume the node IDs are assigned in order along the path, and
for ring graphs, we assume that the node IDs are assigned in
ascending order around the ring in a clockwise fashion.

Each agent i has a state xi(t) ∈ R. The objective is for each
pair of neighboring agents i and j to maintain a prespecified
difference pij between their states

xi(t)− xj(t) = pij for each (i, j) ∈ E. (1)

If xi(t) represents an agent’s position, for example, pij is the
desired distance between agents i and j. We assume that each
agent i knows pij for all j ∈ N(i).

A subset S ⊆ V of agents act as leaders. The states of these
agents serve as reference states for the network. The state of
each leader s ∈ S remains fixed at its reference value xs. The
remaining agents v ∈ V \ S are followers. A follower updates
its state based on measurements of the differences between its
state and the states of its neighbors. Let x denote the vector of
states that satisfy (1) when the leader states are fixed at their
reference values. We assume that at least one such x exists.

1) Noisy Formation Dynamics: We first consider the forma-
tion dynamics presented in [7], which we call noisy formation
dynamics. In these dynamics, the followers’ measurements are
corrupted by stochastic noise. The dynamics of each follower
agent is given by

ẋi(t) = −
∑

j∈N(i)

Wij (xi(t)− xj(t)− pij + εij(t)) (2)

where Wij is the weight for link (i, j), and εij(t) are zero-
mean white noise processes with autocorrelation functions
E[εij(t)εij(t+ τ)] = νijδ(τ). Here, δ(·) denotes the unit im-
pulse function. Each εij is independent, and εij and εji are
identically distributed. As specified in [7], the link weights
are given byWij = νij/Δi, whereΔi =

∑
j∈N(i)(1/νij). This

policy ensures that the steady-state variance of the deviation of
the follower states from a desired x is bounded [7]. We discuss
this in more detail in Section II-B1.

Let L be a weighted Laplacian matrix of the graph G, with
each component defined as

Lij =

⎧⎪⎨
⎪⎩
− 1

νij
, if (i, j) ∈ E

Δi, if i = j

0, otherwise.

(3)

Authorized licensed use limited to: IBM. Downloaded on September 26,2024 at 16:49:26 UTC from IEEE Xplore. Restrictions apply.

PATTERSON et al.: OPTIMAL k-LEADER SELECTION FOR COHERENCE AND CONVERGENCE RATE IN 1-D NETWORKS 525

Arranging the node states x(t) so that x(t) = [xf (t)T xl(t)
T]

T
,

where xf (t) contains the follower nodes’ states and xl(t) con-
tains the leader nodes’ states, L can be decomposed as

L =

[
Lff Lfl

Llf Lll

]
. (4)

The submatrix Lff defines the interactions between followers,
and the submatrix Lfl defines the impact of the leaders on the
followers. Since G is connected, Lff is positive definite [26].

Let B be the |V − S| × |E| matrix where each column k
corresponds to an edge (i, j) ∈ E. Bik = Lij if edge k is the
edge (i, j), and Bik = 0 otherwise. With these definitions, the
dynamics of the follower agents can be written as

ẋf (t) = −D−1
f (Lffxf (t) + Lflxl(t) +Bp) + ε(t)

where Df is a |V − S| × |V − S| diagonal matrix with diago-
nal entriesΔi, p is the vector of desired differences pij , and ε(t)
is the |V − S|-vector of noise processes. Let xl be the vector of
reference states of the leader nodes. The desired state of the
follower nodes is given by xf = −L−1

ff (Lflxl +Bp). We refer
the reader to [7] for the details of this derivation.

2) Consensus Dynamics: We also consider a simplified
leader-follower system where pij = 0 for all (i, j) ∈ E and
where xl = x1 with x ∈ R, that is, all leaders share the same
reference value x. Note that x may be nonzero. Each follower
updates its state based on exact relative measurements of the
states of its neighbors

ẋi(t) = −
∑

j∈N(i)

Wij (xi(t)− xj(t)) . (5)

We assume that for all follower nodes i, Wij > 0, and that for
all follower nodes i and j, Wij = Wji. In the absence of leader
nodes, these dynamics correspond to the standard consensus
dynamics over an undirected graph. We thus call the dynamics
consensus dynamics. The objective in this setting is for all
follower agents to converge to the leaders’ value x.

We define the weighted Laplacian matrix L as

Lij =

⎧⎪⎨
⎪⎩
−Wij if (i, j) ∈ E∑

j∈N(i) Wij if i = j

0 otherwise.

(6)

Let Lff be the principle submatrix of L capturing the follower-
follower interactions, as in (4). The followers’ states evolve as

ẋf (t) = −Lffxf (t)− Lflxl. (7)

Defining x̃f (t) = xf (t) − xf , where xf = x1, we re-
write (7) as

d

dt
(x̃f (t) + xf) = −Lff (x̃f (t) + xf)− Lflxl

d

dt
x̃f (t) = −Lff x̃f (t)

where the second equality follows from the fact that Lff1+
Lfl1 = 0. The rate of convergence to consensus is thus equiv-
alent to the rate at which x̃f (t) converges to 0 [5].

B. Leader Selection Problems

1) Leader Selection With Noisy Formation Dynamics: Under
the dynamics (2), the followers’ states deviate from x, however,
the variances of these deviations are bounded in the mean-
square sense. For a follower agent i, let ri be the steady-state
variance of the deviation from xi

ri
Δ
= lim

t→∞
E
[
(xi(t)− xi)

2
]
.

It has been shown that

ri =
1

2

(
L−1
ff

)
ii

(8)

where Lff is as defined in (4), that is, Lff is the submatrix
of the Laplacian L defined in (3) with the rows and columns
corresponding to nodes in S removed. A derivation of (8) can be
found in [4].

We measure the performance of the formation for a leader set
S by the total steady-state variance of the deviation from x

R(S)
Δ
=

∑
i∈V \S

ri =
1

2
tr
(
L−1
ff

)
. (9)

A formation with a small R(S) exhibits good coherence, mean-
ing the formation closely resembles a rigid formation.

A natural question that arises is how to identify a leader set
S of a certain size that minimizes the total steady-state vari-
ance (9). This question is formalized as the k-leader selection
problem for coherence.

Problem Statement 1: The k-leader selection problem for
coherence is

minimize R(S)

subject to |S| ≤ k. (10)

A naïve solution to this problem is to construct all subsets
of V of size at most k, evaluate R(S) for each leader set, and
choose the set for whichR(S) is minimized. The computational
complexity of this solution is combinatorial since the number
of leader sets that would need to be evaluated is

∑k
i=1

(
n
i

)
. In

Section III, we show that for 1-D graphs, the optimal leader
set can be found with time complexity that is polynomial in
n and k.

2) Leader Selection With Consensus Dynamics: Under the
leader-follower consensus dynamics (5), when all leader states
are equal, the follower states converge asymptotically to x
[12]. We quantify the performance of this system in terms of
the convergence rate. The convergence rate is determined by
the smallest eigenvalue of Lff [27]. This eigenvalue, in turn,
depends on which agents are selected as leaders. We let C(S)
denote the smallest eigenvalue of Lff for the leader set S. The
k-leader selection problem for fast convergence is to find the
set S, of size at most k, that maximizes this eigenvalue.

Authorized licensed use limited to: IBM. Downloaded on September 26,2024 at 16:49:26 UTC from IEEE Xplore. Restrictions apply.

526 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 4, NO. 3, SEPTEMBER 2017

Problem Statement 2: The k-leader selection problem for
fast convergence is

maximize C(S)

subject to |S| ≤ k. (11)

As with Problem 1, this problem can be solved by a search
over all possible leader sets of size k or less, an approach
which has combinatorial complexity. In Section IV, we give the
polynomial-time algorithms that find the optimal leader set in
1-D graphs.

III. OPTIMAL LEADER SELECTION FOR COHERENCE

In this section, we present our leader selection algorithms
for Problem 1 for path and ring graphs. Our approach for both
graph types is to first reduce the leader selection problem to
the task of finding a minimum-weight path in a digraph. We
then solve this minimum-weight path problem using a modified
version of the Bellman-Ford algorithm [17].

A. Optimal k-Leader Selection for a Path Graph

In a path graph with k leader nodes, the matrix Lff is block
diagonal with, at most, k + 1 blocks. Further, each block is
tridiagonal. For example, consider a path graph with leader set
S = {�1, �2, . . . , �k}, where �i < �i+1 for i = 1, . . . , (k − 1).
The matrix Lff is formed from the weighted Laplacian L by
removing the rows and columns corresponding to the nodes in
S. Lff can be written as

Lff =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L[1,�1) 0 · · · · · · 0

0 L(�1,�2) 0 · · ·
...

...
. . .

. . .
. . .

...

0
. . .

. . . L(�k−1,�k) 0
0 · · · · · · 0 L(�k,n]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12)

where the matrices L[1,�1), L(�i,�i+1), i = 1, . . . , (k − 1), and
L(�k,n] are defined as follows. L[1,�1) is the submatrix of L
consisting of the rows and columns 1 through �1 − 1 of L. This
matrix models the interactions of the follower nodes i = 1, . . . ,
(�1 − 1). Note that node �1 is the only leader that affects the
states of these nodes. L(�i,�i+1) is the submatrix of L consisting
of the rows and columns indexed from �i + 1 to �i+1 − 1, inclu-
sive. This matrix models the interactions of the nodes between
leader node �i and leader node �i+1; these follower nodes are
influenced by both leaders. Finally, L(�k,n] consists of the rows
and columns i = (�k + 1), . . . , n of L, inclusive, and mod-
els the interactions of the follower nodes i = (�k + 1), . . . , n.
Leader node �k is the only leader that influences the states of
these nodes. If there are leaders u, v ∈ S such that v = u+ 1,
then the corresponding submatrix of L will be of size 0.

We construct a weighted digraph G = (V ,E,W) based on
Lff as follows. The set of nodes consists of V and an additional
source node s and target node t, that is, V = V ∪ {s, t}, as
shown in Fig. 1. The edge set E contains edges from s to every
node v ∈ V . The weight of edge (s, v) is (1/2)tr(L[1,v)

−1).

Fig. 1. Digraph generated from the four-node path graph.

This edge weight is the total steady-state variance for nodes
1, . . . , (v − 1) when node v is a leader node and there are no
other leader nodes u with u < v. E also contains edges from
each node u ∈ V to each node v ∈ V with u < v. The weight of
edge (u, v) is (1/2)tr(L(u,v)

−1). This weight is the total vari-
ance of the nodes i = (u+ 1), . . . , (v − 1) when nodes u and v
are leaders and there are no other leader nodes w with u < w <
v. Finally, E also contains edges from every node v ∈ V to
node t. The weight of edge (v, t) is (1/2)tr(L(v,n]

−1). This
weight is the total variance of the nodes i = v + 1, . . . , n when
v is a leader and there are no other leader nodes u with u > v.
The weights of edges (s, 1), (n, t), and (u, u+ 1), u = 1 . . .
(n− 1) are 0.

Proposition 1: Let G be a path graph, and let L be the res-
pective weighted Laplacian defined in (3). Let G be the di-
graph generated from G and L. Further, let P = {s, u1, u2, . . . ,
uk, t} be the set of nodes on a path from s to t in G that contains
k + 1 edges, and let w be the corresponding path weight. Then,
for S = P \ {s, t}, the coherence for the leader set S in the
graph G is R(S) = w.

Proof: For S= P \ {s, t}, R(S) = (1/2)tr(L−1
ff), where

Lff is the submatrix of the Laplacian where the rows and
columns of nodes in S have been removed. Using the definition
of Lff in (12), we can write R(S) as

R(S) =
1

2
tr
(
L[1,u1)

−1
)
+

1

2

k−1∑
i=1

tr
(
L(ui,ui+1)

−1
)

+
1

2
tr
(
L(uk,n]

−1
)
. (13)

Note that if any submatrix of L is of size 0, then the trace of the
inverse of this submatrix is 0.

In the digraph G, the weight of the path formed by P is

w = ws,u1
+

k−1∑
i=1

wui,ui+1
+ wuk,t

where wi,j is the weight of the edge from i to j in G. The
edge weights in the digraph are defined so that ws,u1

=
(1/2)tr(L[1,u1)

−1), wui,ui+1
= (1/2)tr(L(ui,ui+1)

−1) for
i = 1, . . . , k + 1, and wuk,t = (1/2)tr(L(uk,n]

−1). Therefore,
R(S) = w. �

It follows from Proposition 1 that to find a leader set S, with
|S| ≤ k, that minimizes (13), one seeks a minimum-weight path
from s to t in G that has, at most, k + 1 edges. The optimal
leaders are the nodes along this path between s and t. To find this
minimum-weight path, we use a slightly modified implemen-
tation of the Bellman-Ford algorithm [17]. The Bellman-Ford

Authorized licensed use limited to: IBM. Downloaded on September 26,2024 at 16:49:26 UTC from IEEE Xplore. Restrictions apply.

PATTERSON et al.: OPTIMAL k-LEADER SELECTION FOR COHERENCE AND CONVERGENCE RATE IN 1-D NETWORKS 527

algorithm is an iterative algorithm that finds the minimum-
weight paths (of any length) from a source node to every other
node in the graph. While there are more efficient algorithms that
solve this same problem, Bellman-Ford offers the benefit that
in each iteration m, the algorithm finds the minimum-weight
paths of m edges. Therefore, we can execute the Bellman-Ford
algorithm for k + 1 iterations to find the minimum-weight path
of, at most, k + 1 edges. We have made slight modifications
to this algorithm to make it possible to retrieve not only the
weight of the path but the list of nodes traversed in this path.
Our modified version of the Bellman-Ford algorithm is detailed
in the technical report [33].

The pseudocode for our k-leader selection algorithm for
coherence is given in Algorithm 1. The algorithm returns the
optimal set of leaders of size at most k. A leader set may have
cardinality h < k if the inclusion of more than h leaders does
not decrease R(S).

Algorithm 1 Algorithm for finding the optimal solution to the
k-leader selection problem for coherence in a path graph.

1: Input: G = (V,E), edge weights Wij , k
2: Output: Set of leader nodes S, error R(S)

3: L ← Laplacian of G
4: G ← digraph constructed from G and L
5: /∗ Get node set and weight of min. weight path ∗/
6:(P,weight)←MODIFIEDBELLMANFORD(G, s, t, k + 1)

7: /∗ Construct leader set from min. weight path. ∗/
8: S ← P \ {s, t}
9: R(S) ← weight

10: return (S,R(S))

Theorem 1: For a path graph G with n nodes, the k-leader
selection algorithm identifies the leader set S, with |S| ≤ k, that
minimizes R(S) in O(n3) operations.

Proof: From Proposition 1 and the correctness of the
Bellman-Ford algorithm, Algorithm 1 finds the optimal leader
set. We next examine the complexity of the proposed algorithm.

The algorithm consists of two phases. The first phase is the
construction of the digraph G = (V ,E). The edge set E con-
sists ofn edges with s as their source (one to each v∈V), n edges
with t as their sink (one from each v ∈ V), and one edge from
each u ∈ V to each v ∈ V with u < v. Thus, |E| ∈ O(n2). To
find each edge weight, we must find the diagonal entries of the
inverse of a tridiagonal matrix of size at most (n−1)× (n−1).
These diagonal entries can be found in O(n) operations
[28]. Therefore, the digraph G can be constructed in O(n3)
operations.

The second phase of the algorithm is to find the shortest path of,
at most, k + 1 edges from s to t in G. For a graph with m edges,
the Bellman-Ford algorithm finds the minimum-weight path of
length at most h edges in O(hm) operations [17]. Therefore,
the second phase of our algorithm has time complexityO(kn2).

Combining the two phases of the algorithm, we arrive a total
time complexity of O(n3). �

B. Optimal k-Leader Selection for a Ring Graph

In a ring graph with k leaders, the leader-follower system
can be decomposed into k independent subsystems (with some
possibly consisting of zero nodes). Each of these subsystems
corresponds to a segment of the graph where two leader nodes
u and v form the boundaries of this segment, where v follows u
in the clockwise direction, and where there are no other leader
nodes in this segment. Nodes u and v are not included in the
subsystem. The coherence of the subsystem is given by the
submatrix of the Laplacian consisting of the rows and columns
corresponding to the nodes between u and v in the ring. We
denote this submatrix by L(u→v). We further let R(u→v) denote
the the total steady-state variance for this subsystem R(u→v) =

(1/2)tr(L−1
(u→v)). For example, in a ring graph with n>6 nodes,

the matrix L(5→2)} contains rows and columns that correspond
to nodes 6, 7, . . . , n, 1. The value R(5→2) is equal to the total
steady-state variance of the nodes 6, 7, . . . , n, 1 when nodes 5
and 2 are leaders and nodes {6, 7, . . . , n, 1} are followers.

To find the optimal leader set of size at most k, we first select
one node i as a candidate leader. We then translate the problem
finding the remaining k − 1 leaders into a problem of finding
a minimum weight path of, at most, k edges over a weighted
digraph. The digraph is described below. To ensure that our al-
gorithm finds the optimal leader set, the algorithm performs this
translation and path-finding for each possible initial leader i =
1, . . . , n. The optimal leader set is the set with the minimum
weight path among these n minimum weight paths (one for
each initial leader selection). The pseudocode for the algorithm
is given in Algorithm 2.

Algorithm 2 Algorithm for finding the optimal solution to the
k-leader selection problem for coherence in a ring graph.

1: Input: G = (V,E), edge weights Wij , k
2: Output: Set of leader nodes S, error R(S)

3: L ← weighted Laplacian for G
4: minWeight ← ∞
5: P ←⊥
6: for i = 1 . . . n do
7: Gi ← digraph constructed from G and L for candidate

leader i
8: /∗ Get node set and weight of min. weight path
9: that contains node i ∗/

10:(P,weight)←MODIFIEDBELLMANFORD(Gi, si, ti, k−1)
11: if weight < minWeight then
12: minWeight ← weight
13: minP ← P
14: end if
15: end for

16: /∗ Construct leader set from min. weight path. ∗/
17: S ← minP \ {si, ti}
18: R(S) ← minWeight
19: return (S,R(S))

For a given initial candidate leader i, its weighted digraph
Gi = (V i, Ei,W i) is defined as follows. The vertex set of V i

Authorized licensed use limited to: IBM. Downloaded on September 26,2024 at 16:49:26 UTC from IEEE Xplore. Restrictions apply.

528 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 4, NO. 3, SEPTEMBER 2017

contains a source node si, a target node ti, and the vertices in V
except for i, that is, V i = {si, ti} ∪ (V \ {i}). The edge set Ei

contains directed edges from si to every node v∈(V \{i}). The
weight of an edge (si, v) is wsi,v = R(i→v). Ei also contains
edges from each node u, v ∈ (V \ {i}). The weight of an edge
(u, v) iswu,v=R(u→v). Finally,Ei contains directed edges from
every node v∈(V \ {i}) to ti with weights wv,ti =R(v→i).

Proposition 2: Let G be a ring graph, and let L be the
respective Laplacian as defined in (3). Let Gi be the weighted
digraph generated from G and L for a given node i. Further, let
P ={si, u1, u2, . . . , uk−1, ti} be the set of nodes on a path from
si to ti in Gi that contains k edges, and let w be the correspond-
ing path weight. Then, for S = P \ {si, ti} ∪ {i}, R(S) = w.

Proof: For a leader set S that contains i

R(S) = R(i→u1) +

k−2∑
j=1

R(uj→uj+1) +R(uk−1→i).

This is precisely w, the weight of path P in Gi. �
It follows from Proposition 2 that to find the optimal leader

set that contains node i, one must find the minimum weight path
from si to ti in Gi of, at most, k edges. The weight of this path
is the minimal R(Si) when i ∈ Si and |Si| ≤ k. Our algorithm
uses the modified Bellman-Ford algorithm to find this path for
each i. Let Si be the set of nodes along this path. The optimal
leader set for the graph is then

S∗ = arg min
Si,i∈V

R(Si).

Theorem 2: For a ring graph G with n nodes, the k-leader
selection algorithm identifies the leader set S, with |S| ≤ k, that
minimizes R(S) in O(kn3) operations.

Proof: The fact that the leader set S is optimal follows
from Proposition 2 and the correctness of the Bellman-Ford
algorithm.

With respect to the computational complexity, the algo-
rithm constructs n weighted digraphs Gi, i = 1, . . . , n, and a
shortest-path algorithm is executed on each digraph.

To construct these digraphs, first, the weight of each edge
(u, v), u, v ∈ V i, u �= v is computed. To compute the weight
for edge (u, v), where v follows u on the ring in the clockwise
direction, we first construct the matrix M from L by shifting
the rows and columns of L so that node u corresponds to the
first row and column of M . The index (row and column of M)
corresponding to a node u after this shift is 1, and the index
corresponding to node v is v − u+ 1 modulo n. The weight of
edge (u, v) is given by

wuv =
1

2
tr
(
M(1,v−u+1 (mod n))

−1
)
. (14)

For each computation, the shift operation to obtain M re-
quires O(n). The trace of the inverse of this matrix can be found
in O(n) operations [28]. Thus, the weights of all pairs (u, v) can
be computed in O(n3). These edge weights are used in every
digraph Gi and can be looked up in constant time (for example,
by storing them in an n× n matrix).

When edge weights can be computed in constant time,
the digraph construction requires O(|V i|+ |Ei|) operations.

Therefore, each Gi can be constructed in O(n2). There are n
such digraphs, so that the construction of all digraphs requires
O(n3) operations. Finally, for each digraph, the Bellman-Ford
algorithm finds the minimum-weight path of, at most, k edges
in O(kn2) time. Thus, to find the minimum-weight path over
these n minimum-weight paths requires O(kn3) operations.

Combining all steps of the algorithm, we obtain a running
time of O(kn3). �

IV. OPTIMAL LEADER SELECTION

FOR FAST CONVERGENCE

In this section, we describe efficient algorithms that give the
optimal solution to the k-leader selection problem for fast con-
vergence in path and ring graphs. Our approach is similar to that
described in the previous section in that we transform the leader
selection problem into a path finding problem in a weighted
digraph. In this case, the problem is the widest path problem
[29]. In the widest path problem, one seeks the path between
two vertices for which the weight of the minimum-weight edge
in that path is maximized.

A. Optimal k-Leader Selection for a Path Graph

Recall that for a path graph with k leaders,Lff can be written
in the block diagonal form in (12). For a given set of leaders, the
convergence rate depends on the smallest eigenvalue of Lff ,
which, in turn, is the minimum over the smallest eigenvalues of
the blocks of Lff , i.e.,

C(S) = min
[{
λmin

(
L[1,u1)

)}
∪
{
λmin

(
L(uk,n]

)}
∪k−1
i=1

{
λmin

(
L(ui,ui+1)

)}]
. (15)

As in the leader selection algorithm for coherence, we first
construct a weighted digraph G = (V ,E,W). The digraph has
the same topology as the digraph generated in Section III-A, but
the edge weights are different. An edge is drawn from s to each
node v ∈ V with edge weight ws,v = λmin(L[1,v)). The weight
ws,v is the convergence rate within the subsystem consisting of
nodes 1, . . . , (v − 1), when node v is a leader and there are no
other leaders in that subsystem. An edge is drawn from each
u ∈ V to each v ∈ V with v > u with edge weight wu,v =
λmin(L(u,v)). These edge weights correspond to the conver-
gence rate within the subgraph between nodes u and v when u
and v are leaders and no other nodes in the subgraph are leaders.
Finally, an edge is drawn from each v ∈ V to t with edge weight
wv,t = λmin(L(v,n]). The weight wv,t is the convergence rate
within the graph consisting of nodes (v + 1), . . . , n, when node
v is a leader and there are no other leaders in that subgraph. The
weights of edges (s, 1), (n, t), and (u, u+ 1), u=1, . . . , n−1,
are +∞.

The following proposition characterizes the relationship be-
tween the weight of a path in G and C(S). The proof is similar
to that of Proposition 1 and is therefore omitted.

Proposition 3: Let G be a path graph, and let L be the re-
spective Laplacian defined in (6). LetG be the weighted digraph
generated fromG and L. Further, let P = {s, u1, u2, . . . , uk, t}
be the set of nodes on a path from s to t in G that contains k + 1

Authorized licensed use limited to: IBM. Downloaded on September 26,2024 at 16:49:26 UTC from IEEE Xplore. Restrictions apply.

PATTERSON et al.: OPTIMAL k-LEADER SELECTION FOR COHERENCE AND CONVERGENCE RATE IN 1-D NETWORKS 529

edges and let w be the minimal edge weight in the path. Then,
for S = P \ {s, t}, C(S) = w.

Following from Proposition 3, finding the leader set for
which C(S) is maximized is equivalent to finding the path from
s to t with, at most, k + 1 edges for which the minimum edge
weight is maximized. This problem is a variation of the widest
path problem. To find the widest path of, at most, k + 1 edges
efficiently, we again use a modified version of the Bellman-Ford
algorithm. Details of the modifications are given in the technical
report [33]. The pseudocode for this algorithm is identical
to that in Algorithm 1, except in line 6, where the call is
to the modified Bellman-Ford algorithm for the widest path
rather than the minimum weight path. We therefore omit this
pseudocode for brevity.

Theorem 3: For a path graph G with n nodes, the k-leader
selection algorithm for fast convergence identifies the leader set
S, with |S| ≤ k, that maximizes C(S) in O(n3) operations.

Proof: The optimality of the leader set S follows from
Proposition 3 and the correctness of the Bellman-Ford algo-
rithm. With respect to computational complexity, the algorithm
consists of two phases, each of which is performed once.
The first phase is the construction of the digraph G = (V ,E).
with |E| ∈ O(n2). Each edge weight is given by the smallest
eigenvalue of a symmetric, tridiagonal matrix. This eigenvalue
can be computed with high accuracy in O(n) operations using
the implicit QR algorithm of Vandebril et al. [30], [31]. Thus,
the digraph G can be computed in O(n3) operations.

The second phase of the algorithm is the execution of the
modified Bellman-Ford algorithm, which has a running time
of O(kn2). Therefore, the total running time of the algorithm
is O(n3). �

B. Optimal k-Leader Selection for a Ring Graph

Using a similar approach to that for path graphs, we adapt the
algorithm for optimal leader selection for coherence to solve the
k-leader selection problem for fast convergence in ring graphs.

To find a leader set of size at most k, first a single candidate
node i is selected as leader. Then, the weighted digraphGi is con-
structed using the same topology as described in Section III-B.
The weight of each edge (u, v) in Gi is wu,v = λmin(L(u→v)).
This gives the convergence rate in the subgraph between nodes
u and v, in clockwise order, when u and v are leaders and there
are no other leaders in that subgraph.

The following proposition characterizes the relationship be-
tween the weight of a path in Gi and C(S). The proof is similar
to that of Proposition 2 and is therefore omitted.

Proposition 4: Let G be a ring graph, and let L be the
respective Laplacian as defined in (6). Let Gi be the weighted
digraph generated from G and L for a given node i. Further,
let P = {si, u1, u2, . . . , uk−1, ti} be the set of nodes on a path
from si to ti in Gi that contains k edges, and let w be the min-
imal edge weight in the path. Then, for S = P \ {si, ti} ∪ {i},
C(S) = w.

Once the graph Gi is constructed, we use our modified
Bellman-Ford algorithm to find the widest path from si to ti of,
at most, k edges. Let Si be the set of nodes along this path. The
minimum edge weight of this path is the maximal C(Si) where

i ∈ Si and |Si| ≤ k. The optimal leader set S∗ is found by
finding the optimal C(Si) for all i ∈ V and identifying the
maximum over all i, i.e.,

S∗ = arg max
Si,i∈V

C(Si).

The pseudocode for this algorithm is nearly identical to that in
Algorithm 2 and is omitted for brevity.

Theorem 4: For a ring graph G with n nodes, the k-leader
selection algorithm identifies the leader set S, with |S| ≤ k, that
maximizes C(S) in O(kn3) operations.

Proof: The optimality of the leader set S follows from
Proposition 3 and the correctness of the Bellman-Ford algo-
rithm. With respect to computational complexity, the algorithm
constructs n weighted digraphs, and the widest path algorithm
is executed on each digraph. As in the proof of Theorem 2, the
n digraphs can be constructed in O(n3) total operations. The
widest path Bellman-Ford algorithm is run for each digraph,
requiring O(kn3) total operations. Therefore, the running time
of the algorithm is O(kn3). �

V. COMPUTATIONAL EXAMPLES

In this section, we explore the results of our k-leader selec-
tion algorithms on several example graphs. For comparison of
the solution to Problem 1, we have implemented the greedy
leader selection algorithm presented in [7] and [16]. The greedy
algorithm consists of, at most, k iterations. In each iteration, a
leader node s is selected, that when added to the leader set S,
yields the largest improvement in R(S) or C(S), respectively.

For the leader selection problem for coherence, this greedy
algorithm does not find the optimal leader set, but rather finds
a set whose performance is within a constant factor of optimal.
Specifically, the greedy leader selection algorithm generates a
leader set S of size at most k such that

R(S) ≤
(
1−

(
k − 1

k

)k
)
R∗ +

1

e
Rmax

where R∗ is the optimal total variance and Rmax
Δ
=

maxi∈V R({i}) [7]. As far as we are aware, this algorithm is the
only previously proposed solution that gives provable bounds
on the optimality of the leader set.

We are not aware of any previously proposed algorithms that
give provable bounds on performance of the selected leader
sets for the k-leader selection problem for fast convergence.
As a means for comparison, we compute the leader set using a
greedy algorithm similar to that in [7] and [16]. In each iteration
i = 1, . . . , k, the greedy algorithm identifies the agent s that
yields the most increase to C(S), i.e.,

s = argmaxv∈V \S C (S ∪ {v})

and this agent is added to the leader set.
We have implemented all algorithms in Matlab.

Authorized licensed use limited to: IBM. Downloaded on September 26,2024 at 16:49:26 UTC from IEEE Xplore. Restrictions apply.

530 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 4, NO. 3, SEPTEMBER 2017

Fig. 2. Comparison of formation coherence for leader sets of size k on a
400-node path graph. (a) Total variance for leader set S produced by the greedy
algorithm relative to the optimal leader set S∗ for the uniform random and
skewed edge-weight policies. (b) Total steady-state variance for the uniform
random edge-weight policy.

A. Formation Coherence

We first investigate the performance of the two leader selec-
tion algorithms for network coherence. We consider two edge-
weight selection policies. In the first policy, the uniform random
weight policy νij is distributed uniformly at random over the
interval (0.01, 1). In the second policy, the skewed policy, we
use νij = 1 for the edges adjacent to the first half of the nodes
in the ring or path and use νij = 0.01 for the remaining edges.

The results for a 400-node path graph are shown in Fig. 2.
Fig. 2(a) shows the total varianceR(S) of the leader set selected
by the greedy algorithm relative to R(S∗), where S∗ is the
optimal leader set, as found by our algorithm. This figure shows
results for both the uniform random and skewed edge-weight
policies. Fig. 2(b) gives R(S) for the optimal leader set and
for the leader set found by the greedy algorithm where edge
weights are determined using the uniform random policy. For
k = 1, the optimal leader �1 is the weighted median of the
path graph (see [32]), and both algorithms select this leader. An
interesting observation is that for k = 2, the greedy algorithm
demonstrates its worst relative performance for the uniform ran-
dom policy. A reason for this can be observed in the example in
Fig. 3(a), where we show the optimal leaders and those selected
by the greedy algorithm for k = 2 in a 13-node path graph with
edge weights all equal to 1. For the coherence problem, the
locations of the optimal two leaders are symmetric. The greedy
algorithm selects the best single leader, the node in the center
of the path, in the first iteration. It selects a node closer to the
edge of the graph in the second iteration. The center node is a
poor choice for k = 2, resulting in a significantly larger total
variance than the optimal.

We note that, overall, the greedy algorithm yields leader sets
whose performance is fairly close to optimal. As the number of
leaders increases, the total variance decreases for both leader

Fig. 3. Leaders selected by the optimal and greedy leader selection algorithms
for k = 2 in a 13-node path graph with all edge weights equal to 1 for
(a) coherence and (b) fast convergence.

Fig. 4. Comparison of formation coherence for leader sets of size k on a
400-node ring graph. (a) Total steady-state variance for leader set S produced
by greedy algorithm relative to the optimal leader set S∗ for the uniform
random and skewed edge-weight policies. (b) Total steady-state variance for
the uniform random edge-weight policy.

selection algorithms. The relative error of the greedy algorithm
does not appear to vanish as k increases.

The results for a 400-node ring graph are shown in Fig. 4. As
before, Fig. 4(a) shows R(S) of the leader set selected by the
greedy algorithm relative to R(S∗), where S∗ is the optimal
leader set as identified by our algorithm. This figure shows
results for the uniform random and skewed policies. Fig. 4(a)
shows R(S) for the greedy algorithm and our optimal algorithm
where edge weights are chosen using the uniform random
policy. For all k greater than 1, the greedy algorithm selects a
suboptimal leader set. For larger values of k, the performance of
the greedy algorithm appears to stabilize around 1.05 times the
optimal R(S∗) for both edge-weight policies. We note that for
larger k, the performance of the greedy algorithm is similar in
the ring and path graphs.

B. Fast Convergence

We next explore the impact of leader set selection on con-
vergence rate. We use a policy where Wij is drawn uniformly
at random from (0, 1) and a skewed policy where Wij = 1 for
edges adjacent to the first half of the follower nodes in the path
or ring and Wij = 100 for the remaining edges.

The results for a 400-node path graph are shown in Fig. 5.
Fig. 5(a) shows C(S), that is, the value of the minimal eigen-
value of Lff , for the leader set selected by the greedy algorithm

Authorized licensed use limited to: IBM. Downloaded on September 26,2024 at 16:49:26 UTC from IEEE Xplore. Restrictions apply.

PATTERSON et al.: OPTIMAL k-LEADER SELECTION FOR COHERENCE AND CONVERGENCE RATE IN 1-D NETWORKS 531

Fig. 5. Comparison of convergence rate for leader sets of size k on a 400-node
path graph. (a) Convergence rate for leader set S produced by the greedy
algorithm relative to the optimal leader set S∗ for the uniform random and
skewed edge-weight policies. (b) Convergence rate for the uniform random
edge-weight policy.

relative to C(S∗), where S∗ is the optimal leader set resulting
from our algorithm. Results are shown for both edge-weight
policies. Fig. 5(b) shows C(S) for the optimal leader set and
leader set identified by the greedy algorithm for various leader
set sizes k under the uniform random edge-weight policy. A
larger C(S) corresponds to faster convergence. As in the previ-
ous set of experiments, both algorithms find the optimal leader
for k = 1. For k greater than 1, the greedy algorithm performs
poorly in most cases. Further, the relative error of the greedy
algorithm does not appear to vanish as k increases.

The results for a 400-node ring graph are shown in Fig. 6. As
before, Fig. 6(a) shows C(S) of the leader set selected by the
greedy algorithm relative to the optimal C(S∗) for both edge-
weight policies. Fig. 6(b) gives C(S) for the greedy algorithm
and optimal leader set for various leader set sizes k under the
uniform random edge-weight policy. For both path and ring
graphs, the greedy algorithm is less effective in solving the
k-leader selection for fast convergence than for solving the
k-leader selection problem for coherence.

Finally, we note that the optimal leader set for coherence is
not necessarily the same as the optimal leader set for fast con-
vergence. This can be observed in the 13-node network shown
in Fig. 3(b), where edge weights are all equal to 1.

VI. CONCLUSION

We have investigated the problem of optimal k-leader selec-
tion in leader-follower consensus systems for two performance
objectives: coherence and convergence rate. A naïve solution to
either leader selection problem has combinatorial complexity;
however, it is unknown whether these problems are NP-Hard or if
efficient polynomial-time solutions can be found. In this paper,
we have taken a step toward addressing this open question. We
have shown that in 1-D undirected, weighted graphs, namely,

Fig. 6. Comparison of convergence rate for leader sets of size k on a 400-ring
path graph. (a) Convergence rate for leader set S produced by the greedy
algorithm relative to the optimal leader set S∗ for the uniform random and
skewed edge-weight policies. (b) Convergence rate for the uniform random
edge-weight policy.

path graphs and ring graphs, the k-leader selection problem for
coherence and the k-leader selection problem for fast conver-
gence can be solved in polynomial time in k and the network
size n. Further, for each problem, we have given an O(n3)
solution for optimal k-leader selection in path graphs and an
O(kn3) solution for optimal k-leader selection in ring graphs.

While our approach depends on the specific structure of path
and ring graphs and, thus, cannot be easily extended to other
graph topologies, we anticipate that by applying other tech-
niques used for the network facility location, it will be possible
to develop efficient algorithms for additional topologies, such
as tree graphs. We plan to address this in future work. Finally,
we will explore using similar algorithmic techniques for leader
selection in other dynamics, including networks where leaders
are also subject to stochastic noise.

REFERENCES

[1] W. Ren, R. W. Beard, and T. W. McLain, “Coordination variables and
consensus building in multiple vehicle systems,” Coop. Control, vol. 309,
pp. 171–188, 2005.

[2] J. Elson, R. M. Karp, C. H. Papadimitriou, and S. Shenker, “Global syn-
chronization in sensornets,” in Proc. Latin Amer. Theoretical Inf., 2004,
pp. 609–624.

[3] P. Barooah and J. Hespanha, “Error scaling laws for linear optimal estima-
tion from relative measurements,” IEEE Trans. Inf. Theory, vol. 55, no. 12,
pp. 5661–5673, Dec. 2009.

[4] P. Barooah and J. Hespanha, “Graph effective resistance and distributed
control: Spectral properties and applications,” in Proc. 45th IEEE Conf.
Dec. Control, Dec. 2006, pp. 3479–3485.

[5] S. Patterson and B. Bamieh, “Leader selection for optimal network coher-
ence,” in Proc. 49th IEEE Conf. Dec. Control, 2010, pp. 2692–2697.

[6] B. Bamieh, M. R. Jovanovic, P. Mitra, and S. Patterson, “Coherence in
large-scale networks: Dimension-dependent limitations of local feedback,”
IEEE Trans. Autom. Control, vol. 57, no. 9, pp. 2235–2249, May 2012.

[7] A. Clark, L. Bushnell, and R. Poovendran, “A supermodular optimization
framework for leader selection under link noise in linear multi-agent
systems,” IEEE Trans. Autom. Control, vol. 59, no. 2, pp. 283–296,
Feb. 2014.

Authorized licensed use limited to: IBM. Downloaded on September 26,2024 at 16:49:26 UTC from IEEE Xplore. Restrictions apply.

532 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 4, NO. 3, SEPTEMBER 2017

[8] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of ap-
proximations for maximizing submodular set functions,” Math. Program.,
vol. 14, no. 1, pp. 265–294, 1978.

[9] F. Lin, M. Fardad, and M. Jovanovic, “Algorithms for leader selection in
stochastically forced consensus networks,” IEEE Trans. Autom. Control,
vol. 59, no. 7, pp. 1789–1802, Jul. 2014.

[10] K. Fitch and N. Leonard, “Information centrality and optimal leader
selection in noisy networks,” in Proc. 52nd IEEE Conf. Dec. Control,
Dec. 2013, pp. 7510–7515.

[11] F. Pasqualetti, S. Martini, and A. Bicchi, “Steering a leader-follower
team via linear consensus,” Hybrid Syst.: Comput. Control, vol. 4981,
pp. 642–645, 2008.

[12] A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, “Controllability of
multi-agent systems from a graph-theoretic perspective,” SIAM J. Control
Optimiz., vol. 48, no. 1, pp. 162–186, 2009.

[13] J. Ghaderi and R. Srikant, “Opinion dynamics in social networks: A local
interaction game with stubborn agents,” in Proc. Amer. Control Conf.,
2013, pp. 1982–1987.

[14] M. Pirani and S. Sundaram, “Spectral properties of the grounded laplacian
matrix with applications to consensus in the presence of stubborn agents,”
in Proc. Amer. Control Conf., 2014, pp. 2160–2165.

[15] A. Clark, B. Alomair, L. Bushnell, and R. Poovendran, “Minimizing
convergence error in multi-agent systems via leader selection: A super-
modular optimization approach,” IEEE Trans. Autom. Control, vol. 59,
no. 6, pp. 1480–1494, Jun. 2014.

[16] A. Clark, B. Alomair, L. Bushnell, and R. Poovendran, “Leader selection
in multi-agent systems for smooth convergence via fast mixing,” in Proc
51st IEEE Conf. Dec. Control, 2012, pp. 818–824.

[17] T. H. Cormen et al., Introduction to Algorithms, 3rd ed. Cambridge,
MA, USA: MIT Press, 2010.

[18] S. Patterson, N. McGlohon, and K. Dyagilev, “Efficient, optimal k-leader
selection for coherent, one-dimensional formations,” in Proc. Eur. Control
Conf., 2015, pp. 1908–1913.

[19] S. Susca, P. Agharkar, S. Martínez, and F. Bullo, “Synchronization of
beads on a ring by feedback control,” SIAM J. Control Optimiz., vol. 52,
no. 2, pp. 914–938, 2014.

[20] M. Baseggio, A. Cenedese, P. Merlo, M. Pozzi, and L. Schenato, “Dis-
tributed perimeter patrolling and tracking for camera networks,” in Proc.
49th IEEE Conf. Dec. Control, 2010, pp. 2093–2098.

[21] L. Y. Wang, A. Syed, G. Yin, A. Pandya, and H. Zhang, “Coordinated
vehicle platoon control: Weighted and constrained consensus and com-
munication network topologies,” in Proc. 51st IEEE Conf. Dec. Control,
2012, pp. 4057–4062.

[22] D. Edwards, T. Bean, D. Odell, and M. Anderson, “A leader-follower
algorithm for multiple auv formations,” in Proc. IEEE/OES Auton.
Underwater Veh., 2004, pp. 40–46.

[23] H. W. Hamacher and Z. Drezner, Facility Location: Applications and
Theory. New York, NY, USA: Springer, 2002.

[24] D. Z. Chen and H. Wang, “New algorithms for facility location problems
on the real line,” Algorithmica, vol. 69, no. 2, pp. 370–383, Jun. 2014.

[25] O. Kariv and S. L. Hakimi, “An algorithmic approach to network loca-
tion problems. ii: The p-medians,” SIAM J. Appl. Math., vol. 37, no. 3,
pp. 539–560, 1979.

[26] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks. Princeton, NJ, USA: Princeton Univ. Press, 2010.

[27] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 2012.

[28] G. B. Rybicki and D. G. Hummer, “An accelerated lambda iteration
method for multilevel radiative transfer. i-non-overlapping lines with
background continuum,” Astron. Astrophys., vol. 245, pp. 171–181, 1991.

[29] M. Pollack, “Letter to the editor: The maximum capacity through a net-
work,” Oper. Res., vol. 8, no. 5, pp. 733–736, Oct. 1960.

[30] R. Vandebril, M. Van Barel, and N. Mastronardi, “An implicit qr algorithm
for symmetric semiseparable matrices,” Numer. Linear Algebra Appl.,
vol. 12, no. 7, pp. 625–658, 2005.

[31] R. Vandebril, M. Van Barel, and N. Mastronardi, “Computing the smallest
singular value of tridiagonal matrices via semiseparable matrices,” in 12th
Int Congr. Comput. Appl. Math., Leuven, Belgium, 2006.

[32] S. Patterson, “In-network leader selection for acyclic graphs,” in Proc.
Amer. Control Conf., 2015, pp. 329–334.

[33] S. Patterson, N. McGlohon, and K. Dyagilev, “Optimal k-leader selec-
tion for coherence and convergence rate in one-dimensional networks,”
Rensselaer Polytechnic Institute, Tech. Rep., Apr. 2006.

Stacy Patterson (M’13) received the M.S. and Ph.D.
degrees in computer science from the University of
California, Santa Barbara, CA, USA, in 2003 and
2009, respectively.

Currently, she is the Clare Boothe Luce Assistant
Professor in the Department of Computer Science
at Rensselaer Polytechnic Institute, Troy, NY, USA.
From 2009 to 2011, she was a Postdoctoral Scholar
at the Center for Control, Dynamical Systems and
Computation at the University of California, Santa
Barbara, CA, USA. From 20011 to 2013, she was

a Postdoctoral Fellow in the Department of Electrical Engineering at the
Technion—Israel Institute of Technology, Haifa, Israel. Her research interests
include distributed algorithms, machine learning, and sensor networks.

Dr. Patterson is the recipient of a Viterbi postdoctoral fellowship, the IEEE
CSS Axelby Outstanding Paper Award, and a National Science Foundation
CAREER award.

Neil McGlohon received the B.S. degree in physics
from the University of Oklahoma, Norman, OK,
USA, in 2014 and is currently pursuing the Ph.D.
degree in computer science from Rensselaer Poly-
technic Institute, Troy, NY, USA.

His main research interests include machine-
learning techniques in distributed systems and sensor
networks.

Kirill Dyagilev received the B.Sc. (Hons.) degree
in computer engineering, and the M.Sc. (Hons.)
and Ph.D. degrees in electrical engineering from
Technion—Israel Institute of Technology, Haifa,
Israel, in 2003, 2009, and 2014, respectively.

Currently, he is a Postdoctoral Fellow with the
Department of Computer Science at Johns Hopkins
University, Baltimore, MD, USA. His research in-
terests span machine learning, including applications
in medicine and health care, and game-theoretic net-
work models.

Dr. Dyagilev received the Forchheimer Foundation fellowship and the
Vivian Konigsberg Award for Excellence in Teaching.

Authorized licensed use limited to: IBM. Downloaded on September 26,2024 at 16:49:26 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

