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Abstract—An emerging trend in High Performance Computing
(HPC) systems that use hierarchical topologies (such as dragon-
fly) is that the applications are increasingly exhibiting high run-
to-run performance variability. This poses a significant challenge
for application developers, job schedulers, and system main-
tainers. One approach to address the performance variability
is to use newly proposed network topologies such as megafly (or
dragonfly+) that offer increased path diversity over a traditional
fully connected dragonfly.

In this work, we select HPC application workloads that
have exhibited performance variability on current 2-D dragonfly
systems. Using the Scalable Workload Model (SWM) library
and CODES HPC systems simulation framework, we evaluate
the baseline performance expectations of these workloads on the
megafly and 1-D dragonfly network models. Our results show
that in the majority of the cases, a megafly network is more
resistant to communication interference than a fully connected
1-D dragonfly network. However, in order to sufficiently mitigate
the performance variability, additional quality of service (QoS)
levels need to be explored. We use bandwidth capping and
traffic differentiation to introduce multiple traffic classes in
megafly networks. In some cases, our results show that QoS
can completely mitigate application performance variability while
causing minimal slowdown to the background network traffic.

Index Terms—Megafly Network, Quality of Service, Perfor-
mance Variability, Dragonfly Network, Parallel Discrete-event
Simulation

I. INTRODUCTION

With modern high-performance computing (HPC) systems
shifting to hierarchical and low-diameter networks, dragonfly
networks have become a popular choice. They have been
deployed in multiple high-performance systems including
Cori, Trinity, and Theta systems at NERSC, Los Alamos
National Laboratory, and Argonne National Laboratory, re-
spectively [1]–[3]. Dragonfly is a hierarchical topology that
uses short electrical links to form groups of routers using
a 1-D or 2-D all-to-all interconnect. These groups are then
connected all-to-all via optical links. While this design offers
low diameter and cost, it increases contention for the link
bandwidth among multiple applications which introduces per-
formance variability [4]. For next-generation exascale systems,
HPC designers are considering variations of the dragonfly
topology that offer increased path diversity, fairness, and

scalability [5]. One such topology that has been recently
proposed is the dragonfly+, or megafly, which uses a two-
level fat tree to form groups of routers. These groups are
then connected all-to-all via optical links. Megafly networks
use the path diversity of a two-level fat tree to alleviate
the communication bottlenecks that can be introduced with
standard dragonfly networks. Megafly networks also have the
added advantage of using only four virtual channels (VCs) for
deadlock prevention (including request and response traffic) as
opposed to eight virtual channels used in a fully connected 1-
D dragonfly network. Prior work [6] has shown that the design
of megafly networks helps mitigate performance variability to
some extent, it does not completely eliminate it.

Although quality of service (QoS) has been investigated
and implemented on TCP/IP networks and data-centers [7],
the mechanism remains largely unexplored in the context of
HPC networks. In the past, HPC network topologies, such
as the torus, had mitigated communication interference by
dedicating isolated partitions to individual jobs. Introducing
QoS traffic classes can be a useful way to mitigate interference
on the now popular hierarchical networks. In this work, we
use HPC application workloads that demonstrate performance
variability on current dragonfly systems as shown by Chunduri
et al. [4]. We replay them on CODES packet-level interconnect
simulations [8], [9] to answer questions about dragonfly and
megafly network topologies: How does the performance of a
megafly network compare with a fully connected dragonfly
network? How do traffic classes help with performance vari-
ability on a megafly network?

The contributions of this work are as follows. (1) We
evaluate the performance variability of HPC application work-
loads on both a megafly and a 1-D dragonfly network using
similar network configurations. We compare the performance
of a megafly network with a 1-D dragonfly to determine
whether megafly network are better resistant to perturbation.
(2) We exploit the fact that megafly requires fewer virtual
channels for deadlock prevention (as compared to conventional
dragonfly), and we use the unused VCs to introduce QoS traffic
classes. We evaluate two mechanisms through which QoS
can be introduced in HPC networks. First, using bandwidth



capping and traffic prioritization, we quantify the impact of
QoS when an entire high-priority traffic class is dedicated to
an application or set of applications. Second, we dedicate the
high-priority traffic class to latency-sensitive operations such
as MPI collectives and observe the performance improvement.
(3) We extend the CODES simulation framework to perform
packet-level simulation of HPC networks in an online mode
driven by the scalable workload models (SWM) [10] for use
in the above-mentioned experiments.

II. EXPLORING QUALITY OF SERVICE ON HPC
NETWORKS

In the past, HPC systems were often constructed with
torus networks, and jobs were allocated onto partitions of
the network that reduced resource sharing and communication
interference. With hierarchical networks sharing resources
such as switches and links, partitioning becomes more difficult
and introducing traffic classes becomes an important step to
mitigate communication interference. For example, Figure 1
shows the performance degradation of two HPC communi-
cation workloads on a model of Argonne’s Theta Cray XC
system, which has a 2-D dragonfly architecture. The perfor-
mance modeling is done using the CODES simulation frame-
work, and the 2-D dragonfly network simulation in CODES
has been validated against Argonne’s theta network using
synthetic communication benchmarks [11]. The background
traffic injection rates are at a percentage of the maximum link
capacity and the application slowdown increases with more
background injection. The slowdown in communication time
can significantly impact the overall application performance
as the typical range of communication time in communication
intensive applications is in the range of 50-80% [12]. Perfor-
mance variability along the same lines has been reported in
[4], where the actual system is seeing a slowdown of up to 2x
in overall performance.
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Fig. 1: Communication time slowdown of LAMMPS (1,024
ranks) and Nekbone (1,000 ranks) with background traffic on
a Theta network model with 3,456 network nodes. Uniform
random workload with large messages is used for background
traffic. Background traffic is injected relative to maximum
link bandwidth (x-axis shows percentage of link capacity
consumed).

Current 2-D dragonfly networks use up to 8 virtual channels
to prevent deadlocks, which is typically all the VCs available.
Megafly networks use only 4 VCs for deadlock prevention (2
VCs for request traffic and 2 for response traffic), thus making

them a better candidate for enabling multiple traffic classes. In
this paper, we explore quality of service on megafly networks
based on traffic prioritization and bandwidth shaping [13].
Figure 2 shows one way to implement quality of service on
HPC networks. In this implementation, a bandwidth monitor
component in each switch tracks the bandwidth consumption
of each traffic class for every port. The bandwidth monitoring
is done over a static time window tw. Each traffic class
is assigned a certain fraction of maximum available link
bandwidth, which serves as the upper bandwidth cap for that
traffic class while the link is oversubscribed. If the bandwidth
consumption of a traffic class reaches the cap and the link is
oversubscribed, the traffic class is designated as inactive for the
remaining duration of the static window tw. An inactive traffic
class has the lowest priority and it gets scheduled only if there
are no packets in the remaining higher priority traffic classes.
At the start of the window tw, the bandwidth statistics for each
traffic class are reset to zero, and the traffic class(es) marked
as inactive are activated again. If all the traffic classes are
violating their bandwidth cap, then a round-robin scheduling
policy is used for arbitration.
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Fig. 2: Enabling quality of service on HPC networks (TC –
traffic class, BW – bandwidth, QoS – quality of service)

The implementation of QoS can be beneficial in reducing
communication interference on hierarchical networks. For in-
stance, a common problem exhibited on such networks is that
communication-intensive (or bandwidth-hungry) applications
can “bully” less-communication-intensive applications [9].
With QoS-enabled networks, bandwidth-hungry applications
can be prevented from exceeding their permissible bandwidth
limits. This approach allows less-communication-intensive ap-
plications to have their fair share. Alternatively, one can assign
a high-priority traffic class to latency-sensitive operations such
as MPI collectives. We report on experiments with both of
these QoS mechanisms in Section VI.

III. SIMULATION ENVIRONMENT

In this section, we describe the simulation environment that
is used for evaluating interference and QoS on hierarchical
networks with realistic HPC workloads. Prior to this work, the
CODES simulation framework supported system simulations
with post mortem communication traces. Although traces
can illustrate realistic system behavior (for a given problem



size), their use inhibits flexibility and simulation scalability
as compared to other workload representations. Therefore, we
extended the CODES simulation suite to replay workloads in
an online or in situ mode using the Scalable Workload Models
(SWMs) presented in [10].

A. Scalable Workload Models

Scalable workload models are a workload representation
approach that focuses on representing the communication
patterns, dependencies, computation-communication overlap,
and algorithms. The SWM code is decoupled from the original
application code as well as from any particular simulator,
enabling use across different simulation environments. The
SWM runtime supports a set of low-level API communication
primitives to support a number of MPI-based communication
operations. The primitives used by the SWM closely resemble
those of MPI and SHMEM, but they are not constrained to
specific syntax or semantics. In this paper, we utilize several
SWM representations for multiple HPC codes including Nek-
bone, LAMMPS and nearest neighbor [10].

B. CODES Simulation Framework

The CODES simulation framework provides high-fidelity,
massively parallel simulations of prototypical next-generation
HPC architectures. The framework has been extensively used
for performance analysis of modern interconnect topologies
(fat tree, torus, dragonfly, express mesh and slim fly) [8].
The network models have been validated against real archi-
tectures [11].

C. Integrating SWM with CODES

To avoid storing large communication traces, we enabled
insitu workload replay with SWM through the Argobots li-
brary [14] to synchronize between CODES and SWM work-
loads. Argobots is a low level threading framework that is
used to synchronize the execution of the SWM workload
in parallel with the CODES simulation framework. More
details on CODES and SWM integrations using Argobots are
discussed in [15].

IV. EVALUATION METHODOLOGY

In this section, we discuss the network configurations, work-
loads, rank-to-node mapping policies, and routing algorithms
used in the study.

A. Topology and Routing Description

The dragonfly network topology, proposed by Kim et
al. [16], consists of groups of routers that are connected to each
other with one or more optical channels. Within each group,
the routers are directly connected to each other in an all-to-
all manner via electrical links. In this paper, we refer to this
configuration as a 1-D dragonfly. A variation of a dragonfly
topology, deployed in the Cray XC systems, uses a 2-D all-
to-all within each group instead of all-to-all connections. We
refer to this configuration as a 2-D dragonfly. A 2-D dragonfly
traverses almost double the number of hops as a 1-D dragonfly.
The hop count traversed by a 1-D dragonfly is close to a

megafly network, therefore, we compare megafly with a 1-D
dragonfly to ensure a reasonable comparison. Various forms
of adaptive routing have been proposed for a dragonfly, which
detect congestion and determine whether the packet should
take a minimal or non-minimal route.

Routing in a dragonfly network is done by taking either
a minimal (typically direct) or nonminimal path. A minimal
path uses the global channel connecting the two groups with
the source and destination nodes. With a nonminimal path,
Valiant’s algorithm [17] is used to route a packet on a minimal
path to a randomly selected intermediate router and then route
the packet minimally to the destination router. Nonminimal
routes are taken if potential minimal routes are congested.
Various forms of adaptive routing have been proposed that
detect congestion and determine whether the packet should
take a minimal or nonminimal route. We use the progressive
adaptive algorithm (PAR) provided in [18]. The PAR algorithm
in the simulation re-evaluates the minimal path until either
the packet decides to take a nonminimal route or the packet
reaches the destination group on a minimal path. A 1-D
dragonfly network uses up to 6 virtual channels to avoid
deadlock, 3 for request and 3 for response. However, prior
work shows that 3 virtual channels for either request or
response traffic can cause congestion in the intermediate group
and suggests adding a fourth virtual channel, which is helpful
in alleviating the congestion [18]. In this work, we use 8
virtual channels for progressive adaptive routing in a dragonfly
network.

What separates various dragonfly topologies from each
other is largely based on the interconnect within a group.
Megafly is a topology that belongs to the Dragonfly class
of interconnection networks. At a high level, it is classified
as having groups of routers which are, in turn, connected
to each other with at least one global connection between
any two groups. Megafly is characterized by its connectivity
in the form of a two-level Fat Tree network in each group.
This locally defined network is also known as a complete
bipartite graph; a graph with two sub-groups where all nodes
within one subgroup are connected to all nodes in the other
subgroup. There are no connections between the routers within
the same subgroup. The two levels in each group have routers
that will be referred to as Leaf Routers, those that have
terminal/compute node connections but no global connections,
and Spine Routers, those that have global connections to other
groups but no terminal/compute node connections [5], [6]. In
this paper, we use the progressive adaptive routing algorithm
proposed in prior studies on Megafly networks [6]. Megafly
requires only 4 virtual channels (VCs) to avoid deadlock and
none to avoid congestion in the intermediate group.

B. Network Configurations

To perform a comparison of the megafly network with a
1-D dragonfly, we maintain similar router radix and similar
node counts. We used a router radix of 32 ports for both
networks. Across the group, the routers are connected via



TABLE I: Configurations of megafly and 1-D dragonfly used for performance comparison

Megafly 1-D Dragonfly
Router Radix 32 32
Groups 33 65
Nodes/Group 256 128
Node Count 8448 8320
Global Connections / Group 256 128
Link Bandwidth 25GiB/sec 25GiB/sec
Nodes Per Router 16 (Leaves only) 8

global channels. The configurations of the 1-D dragonfly and
megafly are given in Table I.

C. Workloads

In order to quantify the slowdown of a particular job due to
communication interference, multiple jobs need to be running
in parallel to exhibit interference. We conduct two types of
interference experiments: (i) replay HPC applications that
serve as foreground communication traffic in conjunction with
a job that generates synthetic background communication to
understand the interference in a controlled manner, and (ii)
replay multiple HPC applications in parallel to capture the
dynamism of multi-phased communication and quantify the
impact of perturbation.

1) Foreground Traffic: Previous work demonstrates the
performance variability shown by LAMMPS, Nekbone, and
MILC applications on the Cray XC40 system [4]. Thus, we use
LAMMPS and Nekbone workloads as foreground workloads
for our experimental analysis. We also use a 3-D nearest-
neighbor communication pattern, which is a commonly used
pattern in several HPC applications.

LAMMPS is a large-scale atomic and molecular dynamics
code that uses MPI for communication. We use the SWM code
that derives its communication pattern from the LAMMPS
application. Figure 3(a) shows the message distribution of
LAMMPS SWM per rank in a problem involving 2,048 ranks.
The LAMMPS workload uses MPI AllReduce with small
messages as well as blocking sends and nonblocking receives
for point-to-point communication with large messages.

Nekbone is a thermal hydraulics mini-app that captures the
structure of the computational fluids dynamics code Nek5000.
Nekbone’s SWM communication pattern is derived from
Nekbone. Figure 3(b) shows the message distribution of the
Nekbone SWM on a per rank basis in a problem with 2,197
ranks. Nekbone performs a large number of MPI collective
operations with small 8-byte messages. It uses nonblocking
sends and receives to transmit medium-sized messages.

Cartesian neighborhood communication is a pattern com-
monly used in multiple scientific applications including Hard-
ware Accelerated Cosmology Code (HACC), fast Fourier
transform solvers, and adaptive mesh refinement (AMR)
codes. We use a 3-D nearest-neighbor SWM in this work that
transmits large messages (64 KiB and 128 KiB) on a per rank
basis with multiple iterations of MPI nonblocking sends and
receives followed by MPI Wait All. A problem size of 4,096
ranks is used with the nearest neighbor SWM.

2) Background Traffic: The background communication
traffic is needed to interfere with the foreground workloads.
To ensure an even distribution of traffic that covers a sig-
nificant fraction of the network, we use a uniform random
communication pattern. This is generally considered a benign
traffic pattern for dragonfly networks. However, with large
messages randomly sent in the network, uniform random
causes hotspots at multiple network locations and becomes
a source of interference. We varied the amount of data trans-
mitted via uniform random traffic and observed the effect of
different data transmission rates on the foreground traffic. The
background traffic generation is modeled as a separate job
that runs in parallel with the foreground traffic and occupies
at least 25% to 50% of the network. The background injection
rates depend on the available compute node to router link
bandwidth in the network. We inject traffic at a percentage
of the available link bandwidth and vary the injection rates
between 2% to 36.5% of the link bandwidth. At the 36.5% rate,
each node is injecting 9GiB/sec of background traffic with an
aggregate network background interference of 18TiB/sec. At
this rate, we see significant slowdown (up to 4x for uniform
random and up to 7x for random permutation) in application
communication times for both networks. Therefore, we keep
that as the maximum background injection rate.

We experiment with two different background communica-
tion patterns: (i) a uniform random synthetic pattern where a
rank randomly chooses a destination rank and transmits large
messages and (ii) a random permutation traffic where a pair of
ranks communicate and transmit data until a certain threshold
is reached.

3) Multiple Applications: As a specific instance of repre-
sentative HPC scenarios, we ran the three foreground work-
loads in parallel (Nekbone, nearest neighbor, and LAMMPS).
We also ran each of these workloads in isolation on the
network to determine the baseline performance and observed
the slowdown introduced when the workloads are running in
parallel.

D. Rank-to-Node Mappings

Ranks are placed on network nodes in a manner similar to
that for production HPC systems, where clusters of available
network nodes are assigned to a job. Therefore, we use a
geometric job placement policy in which multiple clusters of
network nodes are assigned to jobs. In the simulation, the
clusters are formed by using the inverse transform sampling
method for creating random samples from a given distribution.
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Fig. 3: Message distributions for Nekbone and LAMMPS application workloads

The experiments in the paper were performed with three
different rank to node mappings; however, there was not a
noticeable difference between the statistics reported by each
mapping.

V. QUANTIFYING INTERFERENCE ON 1-D DRAGONFLY
AND MEGAFLY NETWORKS

In this section, we analyze the communication interference
on both 1-D dragonfly and megafly networks following the
methodology described in Section IV. Each simulation exper-
iment was conducted three times with different geometric job
allocation policies and the performance difference observed
between each run was less than 2%. The communication
performance is measured by taking the maximum time spent
across all ranks participating in the job. Using the maximum
time is useful for the case where a few ranks are much slower
than the others, which causes the average time to be signif-
icantly less than maximum time. However, the application’s
communication performance is determined by all participating
ranks. The impact of maximum latency on the dragonfly
network has been studied in previous work [19]. Before
discussing the QoS experiments, we compare the baseline
communication performance of megafly and 1-D dragonfly
networks and further quantify the performance degradation
with QoS disabled. We then incorporate QoS mechanisms in
the megafly networks to evaluate the performance with and
without such mechanisms enabled.

1) Uniform Random Background Traffic: Figure 4(a) shows
the communication time of LAMMPS SWM with varying
degrees of background traffic, starting from no background
traffic, on both megafly and 1-D dragonfly. LAMMPS uses a
mix of point-to-point and collective communication as shown
in Figure 3. The performance results in the figure show
that megafly performs better than a 1-D dragonfly in most
of the background traffic injection rates. For the worst case
background injection rate, 1-D dragonfly outperforms megafly.

Figure 4(b) shows the communication time of Nekbone
SWM with and without uniform random background traffic
on both megafly and 1-D dragonfly networks. Nekbone uses a
large number of 8-byte MPI collectives as shown in Figure 3.
Additionally, of the studied workloads, Nekbone is the most
communication volume intensive application: it transmits 4x
more data than the LAMMPS or nearest-neighbor SWM
workloads do. The performance results in the figure show
that megafly performs up to 60% better than a 1-D dragonfly

in all except one background traffic injection rates. For the
worst case background injection rate, 1-D dragonfly again
outperforms megafly.

Figure 4(c) shows the performance of nearest-neighbor
communication on both 1-D dragonfly and megafly networks.
Since we are using geometric job mapping that allocates
cluster of network nodes, the nearest-neighbor pattern involves
extensive communication between two groups. In this case,
megafly consistently outperforms the dragonfly network be-
cause of multiple reasons: (i) megafly has 4 times more links
between group pairs than dragonfly, which makes more links
available for global connections between the two groups, (ii)
megafly has larger group sizes (more nodes available within
a group), which increases locality of communication within a
group. The locality of communication is beneficial for nearest
neighbor traffic, and (iii) Dragonfly has a single minimal path
between two routers within a group whereas megafly has 16
different minimal path options for this route, which reduces
intra-group congestion. Since nearest-neighbor communication
exchanges are based exclusively on point-to-point operations
between two groups, it is less impacted by the background
traffic.

2) Random Permutation Background Traffic: While uni-
form random traffic with large message sizes can cause
dynamic hotspots in the network, we also considered random
permutation traffic to introduce more persistent network inter-
ference. Similar to uniform random, the random permutation
background traffic pattern sends packets randomly to other
nodes in the network. We use a rotating random permutation
pattern that will send continually to the same randomly
selected destination (on a per node basis) until a certain
number of bytes have been transmitted before choosing a
new random destination. Figures 5 shows the performance of
megafly and dragonfly networks. The foreground workloads
see a slowdown in communication time as the number of
bytes exchanged in the background traffic is increased. Since
nearest neighbor traffic involves point to point operations
(mostly to the neighboring group), it is not impacted by the
rotating random background traffic. While the performance
of LAMMPS workload is comparable on both networks, the
Nekbone workload is less perturbed on a megafly network than
a 1-D dragonfly. Our conjecture is that the better performance
of megafly can be attributed to the additional path diversity of
its minimal routes. The results demonstrate that there is nearly



(a) LAMMPS communication times com-
parison

(b) Nekbone communication times com-
parison

(c) Nearest-neighbor communication times
comparison

Fig. 4: Performance of megafly vs. 1-D dragonfly with (a) geometrically allocated 2048/2048 ranks for LAMMPS/uniform
random workloads and (b) geometrically allocated 2197/2197 ranks for Nekbone/uniform random workloads, and (c)
geometrically allocated 4096/4096 ranks for nearest-neighbor/uniform random workloads. The intensity of the background
traffic was scaled at a percentage of the maximum link capacity.

a linear slowdown in the performance of the foreground job
as the number of bytes exchanged in the background traffic
increases.

3) Multiple Applications in Parallel: In the third case, as a
specific instance of representative HPC scenarios, we run the
three workloads (LAMMPS, Nekbone, and nearest neighbor)
in parallel without any synthetic communication traffic. This
scenario clearly mimics a common system state, with multiple
jobs completing for shared resources. Figure 6 shows the
communication time of the three applications when running
in parallel and in isolation on both dragonfly and megafly
networks. We can see that with both LAMMPS and Nekbone,
the applications are much less perturbed on a megafly network
than on a 1-D dragonfly network.

Our analysis shows that in most cases, the megafly network
is less prone to perturbation than is a dragonfly network. On
both networks, however, HPC applications see a significant
slowdown in communication ranging up to 700% in the
presence of intense background communication traffic.

VI. EVALUATING QUALITY OF SERVICE ON MEGAFLY
NETWORKS

Enabling quality of service on HPC networks requires that
each traffic class have its own set of virtual channels. Megafly
networks require a fewer number of virtual channels for
deadlock prevention. When a fixed, limited number of VCs
are available in the switch hardware, megafly needs half as
many VCs as a dragonfly and has the opportunity to use the
extra VCs for QoS. The mechanism for quality of service was
introduced in Section II. In this section, we perform experi-
ments to analyze the impact of QoS on traffic interference and
application slowdown that we saw in Section V. We explore
two configurations through which QoS can be introduced in
megafly networks. Since there can be a large number of permu-
tations for bandwidth caps, we performed a sensitivity analysis
by sweeping different bandwidth values and picked the values
that were most effective (for example, a 30% bandwidth cap

was effective for multiple applications in Section VI-C and a
10% cap for collective priority in Section VI-B). Discussion
of the validation of the QoS mechanism is given in [15].
The static window over which the bandwidth statistics were
monitored was kept to 5 ms throughout these experiments.

A. QoS Mechanism I: Prioritizing Entire Applications

With our first QoS mechanism, a higher priority and high
bandwidth are assigned to the entire application (or set of
applications) so that they face minimal slowdown relative to
other traffic. We use uniform random background traffic and
both LAMMPS and Nekbone foreground workloads that ex-
hibited slowdown on megafly networks in Section V (Nearest
neighbor was not getting perturbed). To understand the impact
on background traffic, we measure the performance of both
foreground workload and background traffic. The background
traffic performance is measured by the maximum time to
complete a message (all messages have the same size in the
synthetic workload).

The benefit of using this QoS approach is that if the
foreground application is not utilizing the full bandwidth
allocated to it, then the background workload can consume
the unutilized bandwidth. Figure 7 compares the performance
of LAMMPS workload with and without QoS enabled on a
megafly network. It also shows the slowdown to background
communication traffic. The LAMMPS workload is not as
communication intensive because it involves point-to-point
messages along with a small number of MPI AllReduce mes-
sages. Therefore, the perturbation to background traffic is not
significant. Because of the high priority given to LAMMPS,
it does not see any slowdown even though it is running in
parallel with intense background traffic. Additionally, while we
observe a significant speedup with LAMMPS, the background
traffic observes only a small degree of slowdown as compared
with the no-QoS case.

Nekbone SWM is a communication-intensive workload that
transmits 4x more data than does LAMMPS SWM, and a



(a) LAMMPS communication times com-
parison

(b) Nekbone communication times com-
parison

(c) Nearest-neighbor communication times
comparison

Fig. 5: Performance of megafly vs. 1-D dragonfly with (a) geometrically allocated 2048/2048 ranks for LAMMPS/random
permutation workloads (b) geometrically allocated 2197/2197 ranks for Nekbone/random permutation and (c) geometrically
allocated 2197/2197 ranks for nearest-neighbor/Random Permutation workloads. The amount of data exchanged between two
nodes in a rotating random permutation was scaled from 250 KiB to 8 MiB.

Fig. 6: Communication times of LAMMPS (2,048 ranks),
Nekbone (2,197 ranks), and nearest neighbor (2,048 ranks)
when running in parallel on 1-D dragonfly and dragonfly+
networks. Baseline indicates the application runs in isolation.

majority of the communication involves collectives. Figure 8
shows the performance of the Nekbone SWM when QoS is
enabled. Once again we see Nekbone having minimal slow-
down when QoS is enabled while causing minimal slowdown
to background communication traffic. The primary reason for
the improved performance is that both Nekbone and LAMMPS
are given high priority and high bandwidth yet they do not
consume all the bandwidth assigned to them. Therefore, the
background traffic is able to get the required bandwidth that
it needs while observing little slowdown. Both these results
demonstrate that traffic differentiation with bandwidth shaping
and prioritization can mitigate (or eliminate) communication
interference to HPC workloads while causing minimal slow-
down to the background traffic. Assigning a high priority to an
application can eliminate the perturbation to that application
while experiencing a reasonable slowdown in the remaining
network traffic.

B. QoS Mechanism II: Prioritizing and Guaranteeing Band-
width to Latency-Sensitive Operations

Several HPC applications rely on the performance of MPI
collective operations. In a majority of the cases, collectives
comprise small messages, and the application performance
suffers when heavy background network traffic interferes with
the transmission of these messages. An alternative application
of QoS is to assign a high priority and guaranteed bandwidth
to collective operations.

Figure 9 shows the performance of LAMMPS when high
priority is given to collectives and compares it with the case
where no QoS is enabled. In this case, we are assigning a high
priority but a small fraction of bandwidth to collective opera-
tions; the point-to-point operations and background traffic are
given a lower priority and higher bandwidth cap (90%). We
see that although there is some slowdown in foreground traffic
when the background traffic becomes intense, the foreground
workload is still 10% faster than the case where no QoS is
enabled (specifically in the case of 15% background traffic
injection). Additionally, LAMMPS uses more point-to-point
operations and has fewer collective operations.

Figure 10 shows the performance of Nekbone when given
high priority and a guaranteed bandwidth to collectives. Nek-
bone relies heavily on collective operations whereas LAMMPS
uses fewer collectives. Therefore, we see a significant per-
formance improvement of up to 60% speedup compared
with the case where no QoS is enabled. The background
communication traffic does not show a slowdown in message
communication times; instead it shows a slight performance
improvement compared to no-QoS options in one case.

C. Applying QoS Mechanisms to Multiple Application Work-
loads in Parallel

In this section, we examine both QoS mechanisms in the
case where multiple applications are running in parallel, which
is a specific instance of a representative HPC system. We
compare the QoS-enabled performance with the case where



(a) LAMMPS communication times (b) Background traffic performance

Fig. 7: QoS Mechanism I (Application Priority): Performance of LAMMPS and background traffic on megafly network with
QoS enabled and disabled. The entire LAMMPS application is given a high priority and high bandwidth (70%).

(a) Nekbone communication times (b) Background traffic performance

Fig. 8: QoS Mechanism I (Application Priority): Performance of Nekbone and background traffic on megafly network with
QoS enabled and disabled. The entire Nekbone application is given a high priority and high bandwidth (70%).

(a) LAMMPS communication times (b) Background traffic performance

Fig. 9: QoS Mechanism II (Collective Priority): Performance of LAMMPS and background traffic on megafly network with
application-based QoS enabled and 10% bandwidth guaranteed to collectives.

there are multiple applications running without any QoS. For
the first QoS mechanism, since Nekbone is more communica-
tion intensive than LAMMPS and nearest neighbor (shown in
Figure 3) we assign it a separate traffic class with a bandwidth
cap of 30% and a high priority. The rest of the bandwidth
(70%) is available to both LAMMPS and nearest neighbor.
For the second QoS mechanism, we assign a higher priority to
all collective communication in both LAMMPS and Nekbone
and then see the impact on application performance.

Figure 11 shows the performance of multiple applications
running in parallel with and without QoS enabled. In short,

both schemes are beneficial, and lead to reduced communica-
tion time. With the QoS Mechanism I, we give a high priority
and guaranteed bandwidth to Nekbone (30%). Nekbone is
communication intensive; and with a high priority and 30%
of the bandwidth cap, it does not get any slowdown due to
background communication traffic. In contrast, LAMMPS and
nearest neighbor have a lower priority, and they still see a
performance improvement compared with the case where there
was no QoS enabled. Adding bandwidth caps on Nekbone
(which is a bandwidth-intensive application) helps improve
the performance of LAMMPS and nearest neighbor as well.



(a) Nekbone communication times (b) Background traffic performance

Fig. 10: QoS Mechanism II (Collective Priority): Performance of Nekbone and background traffic on megafly network with
application-based QoS enabled and 10% bandwidth guaranteed to collectives.

Fig. 11: Communication times of Nekbone, LAMMPS, and
nearest-neighbor workloads when running in parallel. Both
mechanisms of application-based QoS were enabled. The com-
parison is done with (i) the worst case when no QoS is enabled
(Multi No QoS) and (ii) the best case when the workload is
running in isolation with no interference (baseline).

With the QoS Mechanism II, where collective communi-
cation is given priority, both LAMMPS and Nekbone benefit
by seeing a 10% and 20% speedup, respectively, compared
with the case where QoS is not enabled. One interesting
observation is the performance of the nearest-neighbor work-
load, which is much faster with QoS enabled than when the
workload is running in isolation. Looking at the adaptive
routing statistics, we see that the nearest-neighbor workload
when running in isolation takes the maximum number of
minimal routes because of the bias toward minimal routes.
With QoS enabled, nearest-neighbor traffic has a lower priority
with QoS mechanisms enabled, which causes it to take more
nonminimal routes, coincidentally helping with the congestion
points. Thus the workload sees improved performance. A
similar phenomena is observed with Nekbone when it is
running with QoS Mechanism I.

These experiments demonstrate the effectiveness of apply-
ing QoS to reduce or eliminate communication interference.
With both mechanisms, Nekbone, being more bandwidth in-
tensive, sees a 20% to 350% speedup in communication time

compared with the case where QoS is not enabled. LAMMPS
sees a 10% to 200% improvement in communication time
compared with the case where QoS is not enabled.

VII. RELATED WORK

There are different approaches to address run-to-run vari-
ability on HPC systems. One approach is based on partitioning
the networks and providing an isolated partition for a job.
While this approach has successfully worked for low-radix
networks such as torus [20], it is a challenge to implement
partitioning on networks such as dragonfly or megafly, due to
their hierarchical nature. The other approach is QoS, which can
be enforced through various mechanisms on data centers and
HPC networks. Flow control [21] [22] is a high-level approach
for avoiding interference in large-scale and datacenter-scale
networks which takes a coarser-grained look at data within the
network. Alizedah et al. [23] studied the impacts of sacrificing
a portion of the total bandwidth while lowering the threshold
for congestion sensing to provide a buffer zone within links
in an attempt to reduce the overall latency of applications in
a datacenter environment. On the algorithmic routing side of
QoS implementation, many different approaches exist, from
centralized global information methods to distributed routing
algorithms with limited or incomplete network information
and hierarchal algorithms that bridge the gap between glob-
ally and locally available information when making routing
decisions. Chen and Nahrstedt [7] presented an overview of
various routing algorithms solving different QoS problems for
both unicast and multicast applications. Most of the literature
available on quality of service is intended for data-centric
and TCP/IP networks and does not explore HPC workloads,
routing, and flow control mechanisms. Cheng et al. [13]
provided high-level details about implementing quality of
service on data-centric and HPC networks. The work is not
specific to a topology and does not provide any performance
results. Jakanovic et al. [24] provided an efficient QoS policy
for HPC systems with InifiBand network (fat tree topology).

VIII. DISCUSSION & CONCLUSION

With HPC applications showing performance variation on
recent hierarchical interconnects, we analyze communication



interference for both megafly and dragonfly networks. We
extend the CODES parallel simulation framework to replay
the communication workloads of LAMMPS, Nekbone and
nearest neighbor using the concept of Scalable Workload
Models (SWM). We introduce moderate to intense background
communication traffic during the execution of these commu-
nication workloads and compare the slowdown on megafly
network with a 1-D dragonfly network. We demonstrate that
performance variability is experienced in both topologies,
while observing that in a majority of experiments the per-
formance implication is less severe for megafly.

To further mitigate the variability, we introduce traffic
differentiation and quality of service mechanisms in megafly
networks, as megafly makes QoS implementation feasible by
requiring fewer VCs for deadlock avoidance. We explore two
different QoS mechanisms for HPC workloads (i) prioritizing
and bandwidth capping entire HPC applications (ii) prioritiz-
ing and guaranteeing bandwidth to latency sensitive collective
operations with small messages. With the first mechanism,
performance results show that when a high priority and a
bandwidth cap is given to entire HPC applications, it can elim-
inate performance variability while the rest of the background
traffic also sees minimal impact. For the second mechanism,
we show that when a small fraction of bandwidth is guaranteed
to latency sensitive operations like the MPI collectives, it
can mitigate the performance variability by 10% to 60%
depending upon the intensity of collective communication in
the application.

While this work is aimed to provide a proof of concept
that QoS is effective in mitigating communication interference
for realistic HPC workloads, there are a number of avenues
that need to be further explored. First, real HPC systems have
tens to hundreds of jobs running. Giving a high priority to
more than one HPC application (as shown in QoS mechanism
I) can introduce interference within the traffic class, which
can slowdown high priority applications. Secondly, a statically
allocated time window for bandwidth monitoring can lead
to bandwidth imbalance with bursty and irregular workloads.
Having a dynamic or sliding bandwidth monitoring window
may be more effective for such cases. Finally, one would
need to explore how to expose the traffic classes to the MPI
interfaces and the scheduler.
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