
Modeling and Analysis of Application Interference on
Dragonfly+

Yao Kang
Illinois Institute of Technology

Chicago, IL, USA
ykang17@hawk.iit.edu

Xin Wang
Illinois Institute of Technology

Chicago, IL, USA
xwang149@hawk.iit.edu

Neil McGlohon
Rensselaer Polytechnic Institute

Troy, NY, USA
mcglon@rpi.edu

Misbah Mubarak
Argonne National Laboratory

Lemont, IL, USA
mmubarak@anl.gov

Sudheer Chunduri
Argonne National Laboratory

Lemont, IL, USA
sudheer@anl.gov

Zhiling Lan
Illinois Institute of Technology

Chicago, IL, USA
lan@iit.edu

ABSTRACT
Dragonfly class of networks are considered as promising inter-
connects for next-generation supercomputers. While Dragonfly+
networks offer more path diversity than the original Dragonfly
design, they are still prone to performance variability due to their
hierarchical architecture and resource sharing design. Event-driven
network simulators are indispensable tools for navigating complex
system design. In this study, we quantitatively evaluate a variety of
application communication interactions on a 3,456-node Dragonfly+
system by using the CODES toolkit. This study looks at the impact
of communication interference from a user’s perspective. Specifi-
cally, for a given application submitted by a user, we examine how
this application will behave with the existing workload running
in the system under different job placement policies. Our simula-
tion study considers hundreds of experiment configurations includ-
ing four target applications with representative communication
patterns under a variety of network traffic conditions. Our study
shows that intra-job interference can cause severe performance
degradation for communication-intensive applications. Inter-job
interference can generally be reduced for applications with one-to-
one or one-to-many communication patterns through job isolation.
Application with one-to-all communication pattern is resilient to
network interference.

CCS CONCEPTS
•Networks→Networkperformancemodeling;Networkper-
formance analysis; Network structure.

KEYWORDS
Dragonfly+ Topology, HPC System, Network Interference, Network
Simulation, Routing

ACM Reference Format:
Yao Kang, Xin Wang, Neil McGlohon, Misbah Mubarak, Sudheer Chunduri,
and Zhiling Lan. 2019. Modeling and Analysis of Application Interference on

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6723-3/19/06. . . $15.00
https://doi.org/10.1145/3316480.3325517

Dragonfly+. In SIGSIM Principles of Advanced Discrete Simulation (SIGSIM-
PADS ’19), June 3–5, 2019, Chicago, IL, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3316480.3325517

1 INTRODUCTION
Scientific simulations used to take us years to finish can now be
completed in seconds on supercomputers or high-performance
computing (HPC) systems. According to the recent Top500 list[13],
the fastest supercomputer is capable of 200 PFlop/s computing
rate, and all of the top 4 systems have a peak rate greater than
100 PFlop/s. In order to achieve petascale or higher performance,
state-of-the-art supercomputers are deployed with millions of cores
and thousands of nodes. Interconnect network plays a critical role
in these systems as it serves as a "central nervous system" for data
exchange among system resources. In the past years, the ever-
increasing need for higher bandwidth, lower latency, and higher
message rate has driven the deployment of Dragonfly networks.

The conception of Dragonfly topology was introduced in 2008[9].
It is an hierarchical network topology dividing a system’s compute
nodes into several identical groups. Global links are used to connect
all groups in an all-to-all manner. In [9], the network performance
analysis is based on an all-to-all, one-dimensional intra-group con-
nection. Therefore, this network architecture is often referred as
1D-Dragonfly. The all-to-all intra-group connection somehow lim-
its the maximum number of compute nodes a group can hold and
hence limits the maximum system size.

The Cray Cascade system[4] is a distributed memory system
based on the Dragonfly network topology. Instead of using 1-dimen-
sional all-to-all intra-group connection, the Cray Cascade system
deploys a two-dimensional, partially all-to-all intra-group connec-
tion. Within a group, routers are arranged into multiple rows and
columns. The routers on the same rows or the same columns are all-
to-all connected and there is no direct connection between routers
that do not share a common row or column. The two dimensions in
a group (i.e. row dimension and column dimension) makes this net-
work commonly be referred as 2D-Dragonfly. Compared with the
conventional 1D-Dragonfly, 2D-Dragonfly can support a larger sys-
tem size because it removes the connections between the routers not
on the same dimension and uses the saved ports for additional com-
pute nodes. However, this advantage comes at the cost of increasing
network diameter and making 2D-Dragonfly a 5-hop topology.

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

161

https://doi.org/10.1145/3316480.3325517
https://doi.org/10.1145/3316480.3325517
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3316480.3325517&domain=pdf&date_stamp=2019-05-29

Dragonfly+[15] or Megafly[5] is a new Dragonfly variant pro-
posed to support a large system size while achieving a low network
diameter. Dragonfly+ adopts a complete bipartite-graph as its intra-
group connection. Similar to 1D-Dragonfly, it is a diameter-three
topology. Additionally, using the same hardware, Dragonfly+ can
support a system size four times larger than 1D-Dragonfly. This
means that under the same system size, path diversity onDragonfly+
is augmented by increasing the number of minimal paths between
compute nodes. The low diameter and large system size charac-
teristics make Dragonfly+ a candidate for exascale interconnect
topology[1]. The Niagara system[14] at SciNet supercomputing
centre is a production system adopting Dragonfly+ topology.

Network resources in Dragonfly systems are shared among user
applications in a multi-user computing environment. Network in-
terference among applications for shared network resources can
cause severe variance in message arrival times due to ephemeral
contention events[3]. In general, the network interference can be
classified into two categories: intra-job interference and inter-job
interference. Intra-job interference, also referred as self-congestion,
denotes the competition for the shared network resources among
parallel processes belonging to the same job, and inter-job interfer-
ence means the network resources competition between parallel
processes from different jobs. Previous studies have unveiled that
performance variation is a serious issue on 1D-Dragonfly and 2D-
Dragonfly systems[16][17]. Nevertheless, little work has been done
for Dragonfly+ systems and this study is intended to bridge the gap.

In this study, we analyze intra-job and inter-job communica-
tion interference on Dragonfly+ by using the CODES network
simulator[11]. Specifically, our analysis emphasizes the interference
from a user’s perspective. When a user submits his/her application
for execution on a production system, we analyze how this user
job (denoted as target application) behaves under the existing run-
ning applications (denoted as background application). Toward this
end, we enhance the current CODES Dragonfly+ module by im-
plementing the Fully Progressive Adaptive Routing adopted in the
production Dragonfly+ system, and adding a mechanism for simu-
lating multiple synthetic workloads. The enhanced CODES version
enables us to simulate a 3,456-node Dragonfly+ system under a vari-
ety of background traffics and target applications. We examine four
target applications, each with a distinct communication pattern. For
each target application, we consider nine combinations of message
frequencies and message sizes, ranging from small-sized messages
in a low frequency to large-sized messages in a high frequency.
Moreover, we consider two job placement policies for allocating the
target application onto the system with various background traf-
fic conditions, one isolating the application from the background
application and the other mixing the target application with the
background application. We examine target application in terms of
message latency (defined as message traveling time from its source
to the destination) under various computing environments.

We make several key findings from the extensive simulation
study: First, communication-intensive applications are severely af-
fected by intra-job interference, especially when they transmit mes-
sages at a rate greater than the available network bandwidth. Intra-
job interference can be mitigated with contiguous job placement for
applications with 3D stencil pattern or with random placement for
applications with tornado pattern. Second, for the applications with

one-to-one or one-to-many communication pattern, performance
variation caused by inter-job interference can generally be miti-
gated through group-level workload isolation such that different
applications do not share the same Dragonfly+ groups. Third, appli-
cation with one-to-all communication pattern such as broadcasting
is resilient to inter-job interference, and existing network traffic
can hardly affect its performance.

The rest of the paper is organized as follows. Section 2 presents
the Dragonfly+ topology, the CODES simulator and related work.
Section 3 provides CODES Dragonfly+ module enhancement with
experimental design and configurations. Simulation result analysis
is given in Section 4 before the conclusion in Section 5.

2 BACKGROUND AND RELATEDWORK
In this section, we provide an overview of the Dragonfly+ topology
including system architecture, network diameter, and the maximum
supported system size. We also introduce the CODES simulator and
the 3,456-node Dragonfly+ system simulated in this study.

2.1 Dragonfly+ Topology
Dragonfly+ [15], also referred as Megafly [5], is a new variant of
Dragonfly topology. The key difference between these two networks
is the connection arrangement within groups. Routers within local
groups in a 1D-Dragonfly network are connected in an all-to-all
manner. Dragonfly+, however, has a local group connection struc-
ture that forms a complete bipartite graph. Both typologies have
their groups all-to-all connected.

Figure 1: A 3,456-node Dragonfly+ system

Figure 1 depicts a 3,456-node Dragonfly+ system simulated in
this study, along with a detailed bipartite router connection in a
group. Groups are connected via global links (in blue) and routers
are connected via local links (in black). There are two types of
routers in a Dragonfly+ group: leaf routers shown as green boxes
and spine routers shown as yellow boxes. Leaf routers only have
local links to spine routers and links to compute nodes, shown
as pink circles in Figure 1. Spine routers, on the other hand, only
have local links to leaf routers and global links to spine routers in
other groups. In a single group, each leaf router is connected to
all spine routers and each spine router has connections to all leaf
routers. There is no connection between any routers of the same

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

162

type. This configuration makes Dragonfly+ intra-group connection
into a complete bipartite-graph.

Dragonfly+ is a diameter three network topology. It means that
any two nodes are connected through 3 links: 2 local links in the
source and the destination groups and 1 global link between them.
The links between compute nodes and leaf routers are not counted
as they are inevitable and independent of network topology.

When using r-radix router, the maximum group size can be
achieved by having r/2 spine routers and r/2 leaf routers such
that each leaf router is attached with r/2 compute nodes and every
spine router has r/2 global links. Therefore, Dragonfly+ maximum
system size can be determined by the following formula:

S+ = (
r

2
)(
r

2
) ∗ ((

r

2
)(
r

2
) + 1) (1)

For 1-D dragonfly network, the maximum group size is achieved
when each router has r/4 ports for global link connections, r/4
ports for compute nodes and r/2 ports for local links. Therefore
the maximum system size can be calculated as follows:

S1D =
r

4
(
r

2
+ 1) ∗ (

r

4
(
r

2
+ 1) + 1) (2)

By comparing Equation (1) and (2), Dragonfly+ can support as
much as 4x compute nodes than 1D-Dragonfly with the same radix
routers.

lim
r→∞

S+
S1D
= 4 (3)

This is a key advantage of Dragonfly+ compared with 1D-Drago-
nfly: using the same radix routers and connection links, Dragon-
fly+ supports a larger system size. In other words, under the same
system size, Dragonfly+ can provide more minimal paths between
two compute nodes. As network resources are shared among jobs
on system, an increase in path diversity between compute nodes
leads to less network contention between jobs, which eventually
causing less job runtime uncertainty and improve overall system
performance.

In this study, we simulate a 3,456-node Dragonfly+ system as
illustrated in Figure 1 with 9 groups using 48-radix routers. Each
group has 24 spine routers and 24 leaf routers. There are 16 com-
pute nodes on each leaf router and 16 global links on each spine
router. As a result, each spine router has 2 global links connecting
to any other group and 48 global links between any two groups.
Network bandwidth is configured according to the Cray Cascade
system[4] with 4.37GiB/s global link bandwidth, 5.25GiB/s local
link bandwidth between routers and 16GiB/s channel bandwidth
between leaf router and compute nodes.

2.2 CODES Simulator
CODES (Enabling CO-Design of Exascale Storage Systems) is an
event-driven network simulator[11]. It provides a set of HPC in-
terconnect models for researchers to simulate different system de-
signs, and ROSS[2] serves as the underlying event-driven simula-
tion framework for CODES.

CODES has been validated against real systems or cycle accurate
simulator in the past studies[8][12]. Many studies have used CODES
for different network topologies analysis [6][10][18]. CODES offers

a Dragonfly+ module since the release of version 1.0.0, which is
enhanced and used in this study.

2.3 Related Work
Simulation study from Jain et al. [7] showed that using random job
placement policy on Dragonfly system can help spread communi-
cation traffic across the network and reduce hot-spots. However,
random job placement on Dragonfly system tends to show a higher
performance variability issue[8]. Yang et al. [17] studied the "bully"
effect on 1D-Dragonfly system, his study showed that a strong
overall network performance is achieved by impairing less commu-
nication intensive applications. Chunduri et al. [3] studied network
interference on the Cray Cascade production system, and unveiled
that user can experience a run-to-run job performance variation in
real life. Wang et al. [16] studied the Cray Cascade system through
simulation, and demonstrated that intra-job interference can be
mitigated with contiguous job placement for low message load
applications.

Dragonfly+ topology is introduced by Shpiner et al. [15]. as a
high performance interconnect network. Flajslik et al. [5] compared
Dragonfly+ with 1D-Dragonfly system showing that Dragonfly+
can provide a higher path diversity and a better throughput. Their
study also discussed system cost and power design problem with
global and local tapering options on the Dragonfly+ system.

Although a lot of studies have been conducted for network inter-
ference on Dragonfly systems, such problem is not well investigated
on Dragonfly+ topology, which motivates this study.

3 METHODOLOGY
The goal of this study is to find out how a user job can be impacted
by other jobs sharing the Dragonfly+ system under different condi-
tions. Hence the performance of the user job (i.e. target application)
is extensively examined in our experiments. In this study, we ana-
lyze four types of target applications, each with a distinct commu-
nication pattern. For each target application, we consider a variety
of message sizes and message frequencies. We use a background ap-
plication to simulate network traffic generated by other jobs (other
than the target application). The background application generates
MPI messages under a variety of communication intensities. In this
section, we present the CODES Dragonfly+ module enhancement,
the background application, and the target applications.

3.1 Dragonfly+ Module Enhancement
The current CODES release provides the Dragonfly+ networkmodel.
For the purpose of the intra- and inter-job interference study, we
make several changes to the CODES simulator, which are described
below.

3.1.1 Balancing global link connection. Neither Dragonfly+[15]
nor Megafly[5] paper fully discussed global link connections be-
tween groups. The only specification is that Dragonfly+ topology
requires the same number of global links between any two groups,
which is 48 in this study.

The CODES dragonfly+ module supports arbitrary inter-group
connection arrangement by taking an external configuration file.
This configuration file can be generated with a provided script.

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

163

When a spine router has multiple global links connecting to an-
other group, the current script generates inter-group connection
by having all available global links connected to one spine router
in the destination group. When a large quantity of data is trans-
mitted between two groups, this repeated connection between two
spine routers in source and destination group can potentially harm
network performance by reaching the receiver router’s maximum
routing capacity and congesting local link when all transmitted
data has the same destination.

We change the global link connection into a linear assignment
way as shown in Figure 2 for a more balanced inter-group connec-
tion.

Figure 2: Global link connection between group i and group
j, where 0 ≤ i < j ≤ 8.

Figure 2 illustrates the global link connections between group
i and j, where 0 ≤ i < j ≤ 8. Router k in group i is connected to
router k ′ in group j with equation: k ′ = (k + l) mod num_spine ,
where l is 0 or 1 and num_spine is the number of spine routers in
a group, which is a half of router radix for a symmetric bipartite
intra-group architecture.

3.1.2 Implementing Fully Progressive Adaptive Routing.
Dragonfly+ relies on Fully Progressive Adaptive Routing (FPAR)[15]
to balance traffic loads among network links. The essence of adap-
tive routing is to let router choose between minimal and non-
minimal paths depending on their congestion condition with the
preference of lower hops routing path.

As shown in Figure 3, FPAR lets router choose between three
paths for message forwarding: one minimal path, and two non-
minimal paths (intermediate spine/leaf path). Minimal path is the
shortest routing path by forwarding messages from the source
group directly to the destination group through three links, whereas
intermediate leaf path is the longest route with message transferred
through three routers in an intermediate group. Figure 3 also de-
picts how FPAR implements deadlock-free routing with the help
of two Virtual Lanes (VL) or Virtual Channels (VC). FPAR only
uses VL0 on minimal path, and VL0 and VL1 on non-minimal paths.
VL is only switched from 0 to 1 on non-minimal path by either
an intermediate spine router or an intermediate leaf router once
FPAR decides to send the message minimally to the destination

Figure 3: Fully Progressive Adaptive Routing Paths

node. Router receives a message from VL1 will only forward it
minimally without considering any non-minimal paths. This mech-
anism avoids cyclic routing path in the intermediate group. FPAR
makes routing decision between three paths (one minimal and two
non-minimal) by firstly checking the available paths and identify
its corresponding port number on the current router. In the case
of the message is from VL1, only minimal paths are considered.
Next a score as the port queue occupancy normalized by the queue
length is attached to each available path. Final decision is made by
comparing port score with a predefined threshold T. A longer path
with score smaller than T will be chosen if and only if all shorter
paths’ scores are greater than T. When all shorter and longer paths
are occupied with a score greater than T, the smallest score shorter
path will be chosen.

The CODES Dragonfly+ network model comes with a default
progressive adaptive routing algorithm based on the comparison
between absolute channel occupancy values. It provides similar
but not exactly identical behavior as FPAR. Based on this routing
function, we implement FPAR to make the simulator have the same
routing behavior as described in [15]. In this study, the predefined
threshold T is set to 50% as non-minimal paths require twice more
global links than minimal path.

3.1.3 SupportingMultiple SyntheticWorkloads. CODES cur-
rently supports the simulation of one synthetic workload occupying
the entire system. We enhance CODES to make it support multiple
synthetic workloads so as to better emulate a production computing
environment.

Our modification makes the CODES synthetic simulator read
two additional configuration files: workload file and allocation file.
Different jobs are defined in the workload file, one line per job,
with their detailed information such as MPI traffic pattern, job size
(number of processes), message interval time, message size, and
number of messages to be sent. The allocation file takes care of job
placement. In our experiments, we only place one MPI process per
node. The allocation file provides information such as which MPI
process should be placed on which node.

In this study we focus on two simultaneous workloads: one is
the target application, and the other is the background application
generating MPI traffics at different intensities.

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

164

3.2 Theoretical Global Link Load (TGLL)
In order to have a comprehensive network interference study, pa-
rameters related to MPI messages should be taken into considera-
tion. Throughout this study, we have MPI message size, message
interval, and global link bandwidth as experimental parameters.
Message interval denotes the time duration between two consecu-
tive messages’ issuing time. A shorter message interval means that
the application injects traffic into the network more frequently and
gives a higher communication intensity. In order to represent differ-
ent network usage scenarios, we define a variable called Theoretical
Global Link Load (TGLL):

TGLL =
Msд_size/Msд_interval
Global_Link_Bandwidth

(4)

TGLL indicates communication intensity with respect to the
usage of global link bandwidth and provides an intuitive indication
of global link load.

In this study, we use TGLL to quantify communication intensity
for both target application and background application under three
cases: underutilized (TGLL 20% − 50%), near-saturated (TGLL 70% −

90%) and overloaded (TGLL > 100%).

3.3 Background Application
The background application is used to generate network traffic as
a mix of MPI communications from all jobs other than the target
application. Background messages are generated with the source
and destination pairs in the first three groups (Group 0, 1, 2) at
different intensities.

Figure 4: (a) Background traffic generated among three
groups. (b) Group 0 with highlighted nodes holding back-
ground application processes

Figure 4(a) gives an overview of the generated background traffic.
Red arrows are virtual paths which background traffic follows. Our
Dragonfly+ system has 48 global links between any two groups,
thus for most of the experiments, we place the same number of
background processes in each group with one process per node.
As shown in Figure 4(b), the 48 background application nodes are
equally distributed over 24 leaf routers. Background application
generates inter-group messages between the source and destination
nodes of the same local node ID but located in different groups. For

example, node 0 in Group 0 only sends and receives messages from
node 0 in Group 1 and Group 2.

Msg. Interval Comm. Intensity
Underutilized
TGLL=50%

Near-saturated
TGLL=90%

Overloaded
TGLL=130%

1µs 2,340 4,212 6,084
10µs 23,400 42,120 60,840
100µs 234,000 421,200 608,400

Table 1: Background application configuration. The cells
present message size in bytes under different message inter-
val and communication intensity configurations.

In this study we mainly focus on background application with
three communication intensities: under-utilized background (TGLL=
50%), near-saturated background (TGLL=90%) and overloaded back-
ground (TGLL=130%). These numbers are obtained by various com-
bination of background application message sizes and message in-
tervals. Table 1 presents background message sizes under different
combinations of message intervals and communication intensities.

3.4 Target Application
Our application interference analysis focuses on the performance
of target application. In this study, the target application is a 2,304-
process (6 group) MPI job with one process per node with four
communication patterns and two job placement policies.

3.4.1 Communication Pattern.
Uniform Random (UR): In this pattern, each MPI process ran-

domly chooses a destination process at each communication itera-
tion. UR pattern has no global links preference as its communication
destinations are randomly selected and tends to evenly distribute
messages across the network. When the job size is as large as
multiple of group size, most of the randomly selected source and
destination nodes are located in different groups, which makes most
of the network traffic into inter-group messages.

3D Stencil: In this pattern, MPI processes are organized as a
3D Cartesian grid and each process communicates with its six
neighbors, two in each dimension. 3D Stencil is a common one-to-
many communication pattern in HPC scientific workloads.

Tornado: In this pattern, each MPI process calculates its com-
munication partner by adding a fixed offset value to its process ID.
This offset is set to be equal to one group size in this study.

Broadcasting: This pattern assigns a root process who broad-
casts one message to all other processes at each communication
iteration. Broadcasting is commonly used in MPI jobs for data syn-
chronization. It is chosen as a representative of one-to-all commu-
nication type. In order to make the analysis of broadcasting pattern
thorough and deep, we extend the background application’s TGLL
to 260%, 390%, and 520% using the equation (4) and adding addi-
tional 3 background application nodes per router in the background
application groups to achieve such TGLLs.

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

165

3.4.2 Job Placement Method.
Contiguous placement: The 2,304 MPI processes of the target

application are allocated in a contiguous manner in Group 3 to 8. In
other words, the target application is isolated from the background
application as they do not share any group.

Random placement: The 2,304 MPI processes of the target
application are allocated onto the system in a random manner
from Group 0 to 8. We use the same random placement layout
for all experiments under this placement. Randomize result shows
that 29.6% target application processes are placed in groups 0, 1
and 2. Hence the target application shares some groups with the
background application.

For the broadcasting pattern, we differentiate random placement
into two cases:

• Random placement with broadcasting root outside back-
ground application groups

• Random placement with broadcasting root in background
application groups.

Msg. Size Comm. Intensity
Underutilized

(TGLL
= 21% - 28%)

Near-saturated
(TGLL

= 73% - 85%)

Overloaded
(TGLL
>100%)

4KB 3µs 1µs 0.5µs
512KB 450µs 150µs 100µs
4MB 4ms 1ms 0.7ms

Table 2: Target application configuration. The cells present
message intervals for UR/Stencil/Tornado under different
message size and communication intensity configurations.

In this study, we analyze three target application message sizes
(4KB, 512KB, and 4MB) under different communication intensities:
underutilized, near-saturated, and overloaded. Table 2 illustrates the
target application configuration with cells indicating the message
interval under different message size and communication intensity
combinations for UR, 3D stencil and tornado patterns. In order to
represent more realistic applications, broadcasting intervals are cho-
sen long enough such that a new broadcasting iteration is initiated
after all the previous broadcasting messages reach their destination.

Our interference evaluation focuses on both intra-job interference
and inter-job interference. A baseline case is set where the target
application is executed without other jobs in the system (i.e., an
ideal non-interference scenario). Message latencies of the target ap-
plication running under various background application intensities
are used to study intra- and inter-job interference.

For the UR, 3D stencil and tornado pattern, we investigate 2
different job placements, 3 message sizes, and 3 message intervals,
under 4 background application loads: baseline, under-utilized (50%
TGLL), near-saturated (90% TGLL), and overloaded (130% TGLL).
For the broadcasting pattern, experiments are designed with heav-
ier, ranging from baseline to 520% TGLL background application
loads under 3 job placement scenarios, namely contiguous place-
ment, random placement where the broadcasting root is located
outside the background application groups (group 0-2), and random

placement where the broadcasting root located in the background
application groups.

4 EXPERIMENTAL ANALYSIS
In this section, we present application interference analysis on a
3,456-node Dragonfly+ system. Application interference is a compli-
cated problem influenced by various factors including background
traffic and target application itself. In this study, we consider var-
ious background traffic intensities as listed in Table 1 and target
applications as listed in Table 2. For each target application, we
study two different job placement policies, namely contiguous and
random placement, as described in Section 3.4.

4.1 Uniform Random (UR)
Figure 5 presents message latency of the target application with UR
communication pattern. The top three plots from (a) to (c) list the
results with the contiguous placement where the target application
does not share groups with the background application. The bottom
plots from (d) to (f) present the results of the random placement
where the target application shares groups with the background
application. In this experiment, we consider nine different con-
figurations of message sizes and message intervals for the target
application as listed in Table 2. For each configuration of the target
application, we simulate its execution under three background in-
tensities (shown in Table 1), along with the ideal baseline with no
external job interference. Each boxplot contains whiskers for the
minimum, the 25% percentile, the median, the 75% percentile, and
the maximum. The purple circle indicates the arithmetic average
of the message latencies.

Baseline performance. The baseline results shown in the pink
boxes indicate the ideal communication performance of the target
application when it has an exclusive access of the system. Because
there is no other jobs on the system, the baseline results help us
understand the impact of job placement policies and the intra-job
interference of the target application under different communica-
tion intensities. The baseline performance shows that the random
placement can help reduce the average message latency for small
message size, but makes no important difference for large mes-
sage size. 4KB message latency under contiguous placement is on
average 2.8x longer than random placement, but 4MB message
experience less than 1% difference.

Intra-job interference. The baseline message latencies of the
target application in Figure 5 show that shorter message interval
(higher communication intensity) increases intra-job interference
and leads to a longer average message latency. Figure 5(a) shows
that the 4KB message size has an average message latency of 2.79µs,
16.10µs, and 51.36µs respectively for 3µs, 1µs, and 0.5µs message
intervals. The overloaded (0.5µs interval) target application slows
18.4x average message latency compared with the underutilized
case (3µs interval). The intra-job interference slowdown phenom-
enon is less severe for the target application with larger message
size. The 4MB message results in Figure 5(c) indicates the baseline
average message latency is of 1.47ms, 2.60ms and 3.62ms respec-
tively for 4ms, 1ms, and 0.7ms message intervals. The maximum
slowdown of average message latency is plunged to 2.46x, which is
much smaller than the 18.4x slowdown found for 4KB message. The

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

166

3us 1us 0.5us
Msg. Interval

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

M
sg

.
La

te
nc

y(
m

s)

Msg. Size: 4KB

450us 150us 100us
Msg. Interval

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

M
sg

.
La

te
nc

y(
m

s)

Msg. Size: 512KB

4ms 1ms 0.7ms
Msg. Interval

0
1
2
3
4
5
6
7

M
sg

.
La

te
nc

y(
m

s)

Msg. Size: 4MB

(a) (b) (c)
Contiguous placement without group overlapping

3us 1us 0.5us
Msg. Interval

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

M
sg

.
La

te
nc

y(
m

s)

Msg. Size: 4KB

450us 150us 100us
Msg. Interval

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

M
sg

.
La

te
nc

y(
m

s)

Msg. Size: 512KB

4ms 1ms 0.7ms
Msg. Interval

0
1
2
3
4
5
6
7

M
sg

.
La

te
nc

y(
m

s)

Msg. Size: 4MB

(d) (e) (f)
Random placement

Figure 5: Message latency of the target application with Uniform Random (UR) communication pattern. The top row depicts
the use of contiguous job placement of the target application without group overlapping with the background application.
The bottom row shows the result of the target application shares groups with the background application under the random
placement. Message latency under different background application loads is identified by its color, where baseline is the target
application executed solely on the system.

intra-job interference effect is independent of job placement poli-
cies for the target application with UR pattern. Figure 5(d) shows
that the 4KB message under the random placement has a baseline
average message latency of 2.32µs, 2.95µs, and 26.93µs for 3µs, 1µs,
and 0.5µs message intervals respectively. The maximum slowdown
between the overloaded (0.5µs interval) and underutilized (3µs inter-
val) communication intensities is 11.6x. For 4MB message in Figure
5(f), baseline average latency is 1.48ms, 2.84ms, and 3.79ms for
4ms, 1ms, and 0.7ms interval with a maximum of 2.56x slowdown,
which is similar to the 2.46x slowdown found under contiguous
placement.

Inter-job interference. The background application causes the
inter-job interference and results in a higher message latency (e.g.,
the blue, green, and orange boxes shown in the figure). Results in
Figure 5 shows that inter-job interference can be mitigated with
contiguous job placement.

Under the contiguous placement, Figure 5(c) shows that the
4MB message with 1ms interval has the average message latency
of 2.603ms, 2.702ms, 2.638ms, and 2.793ms for the baseline, the
50%, 90%, and 130% background application respectively. The 130%
background application can lead to 1.07x average message latency

slowdown, which is the maximum we can observe for the target
application under the contiguous placement. The 4KB message and
the 512KB message experience similar slowdown, but much less
visible.

The random job placement makes inter-job interference more
severe, especially for the target application with non-overloaded
intensities. Always compared with the baseline, the 130% back-
ground application causes a longer message latency: The average
message latency of 4KB message with 1µs interval is increased
from 2.95µs to 9.33µs which is a 3.16x slowdown in Figure 5(d); the
average message latency of the 512KB message with 150µs interval
is surged from 0.13ms to 0.66ms with 5.08x slowdown in Figure 5(e);
for 4MB message with 4ms interval, the average message latency is
changed from 1.48ms to 2.95ms with 1.99x slowdown in Figure 5(f).
Unlike contiguous placement, where we find the 130% background
application causing no more than 7% target application slowdown,
random placement makes the performance variation more obvi-
ous. This is because under the contiguous placement, the target
application with UR pattern is isolated from the background appli-
cation without any group overlapped. Therefore, the majority of the
background application’s messages does not go across the target

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

167

3us 1us 0.5us
Msg. Interval

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

M
sg

.
La

te
nc

y(
m

s)

Msg. Size: 4KB

450us 150us 100us
Msg. Interval

0
2
4
6
8

10
12
14
16

M
sg

.
La

te
nc

y(
m

s)

Msg. Size: 512KB

4ms 1ms 0.7ms
Msg. Interval

0

5

10

15

20

M
sg

.
La

te
nc

y(
m

s)

Msg. Size: 4MB

(a) (b) (c)
Contiguous placement without group overlapping

3us 1us 0.5us
Msg. Interval

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

M
sg

.
La

te
nc

y(
m

s)

Msg. Size: 4KB

450us 150us 100us
Msg. Interval

0
2
4
6
8

10
12
14
16

M
sg

.
La

te
nc

y(
m

s)

Msg. Size: 512KB

4ms 1ms 0.7ms
Msg. Interval

0

5

10

15

20

M
sg

.
La

te
nc

y(
m

s)

Msg. Size: 4MB

(d) (e) (f)
Random placement

Figure 6: Message latency of the target application with 3D stencil communication pattern.

application groups. However under random placement, because of
group sharing between the target application and the background
application, messages of different applications can have the same
source or destination group, leading to a network bandwidth com-
petition between them and resulting in a more severe inter-job
interference. However, Figure 5(f) shows that the 130% background
application only causes 3.6% slowdown for the 4MB message with
0.7ms interval. This indicates that when the target application mes-
sage size is large and has an overloaded communication intensity,
it can be less affected by other jobs.

In summary, for the target application with UR pattern, if it has
an exclusive access to the system, intra-job interference is the main
issue impacting the application communication performance.When
running the target application with background traffic, inter-job
interference can have a great impact on the application, especially
when the target application shares groups with the background
application with the random placement. Job placement is critical for
mitigating inter-job interference. Our results indicate that isolating
the target application from the background application with the
contiguous placement can reduce the inter-job interference and
result in a much less performance degradation.

4.2 3D Stencil
Experiment results for the target application with 3D stencil pattern
are shown in Figure 6.

Baseline performance. The performance of 3D stencil pattern
is greatly affected by job placement policies. Baseline performance
shows that the random placement slows the average message la-
tency at the maximum of 22.60x, 10.20x, and 1.54x compared with
the contiguous placement for the 4KB, 512KB, and 4MB message
respectively. This is because in 3D stencil pattern, each MPI process
communicates with its 6 neighbors on a 3D grid. Under the contigu-
ous placement, most of the MPI processes and its 6 neighbors are
placed in the same group, thus a large portion of the communication
is within group, which saves message inter-group traveling time.
The MPI processes located on the boundary of a group have to com-
municate with its neighbors sited in other groups, going through
one or two global links depending on the adaptive routing decision,
which results in a higher message latency. The random placement
distributesMPI processes across thewhole system,makes themajor-
ity of the messages’ source and destination spread between different
groups, thus prolongs the average message latency significantly.

Intra-job interference. Each plot in Figure 6 shows that with
the same message size, decreasing message interval will increase
application communication intensity, and cause more intra-job in-
terference with the result of a higher average message latency. This
result is coherent with previous findings for the target application
with UR pattern.

Inter-job interference. Inter-job interference for 3D stencil ap-
plication can be mitigated with contiguous placement through job

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

168

3us 1us 0.5us
Msg. Interval

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

M
sg

.
La

te
nc

y(
m

s)

Msg. Size: 4KB

450us 150us 100us
Msg. Interval

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

M
sg

.
La

te
nc

y(
m

s)

Msg. Size: 512KB

4ms 1ms 0.7ms
Msg. Interval

0
1
2
3
4
5
6

M
sg

.
La

te
nc

y(
m

s)

Msg. Size: 4MB

(a) (b) (c)
Contiguous placement without group overlapping

3us 1us 0.5us
Msg. Interval

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

M
sg

.
La

te
nc

y(
m

s)

Msg. Size: 4KB

450us 150us 100us
Msg. Interval

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

M
sg

.
La

te
nc

y(
m

s)

Msg. Size: 512KB

4ms 1ms 0.7ms
Msg. Interval

0
1
2
3
4
5
6

M
sg

.
La

te
nc

y(
m

s)

Msg. Size: 4MB

(d) (e) (f)
Random placement

Figure 7: Message latency of the target application with tornado communication pattern.

Figure 8: Maximum slowdown of the average message la-
tency of tornado pattern caused by inter-job interference

isolation. Figure 6(c) shows that the 130% background application
causes the maximum of 3.20% slowdown for the 4MB message at
1ms interval. The results from Figure 6(a) and (b) show that the
4KB and 512KB message experience less than 1% average message
slowdown. Conversely, the random placement makes the target
application be more affected by the background application. Figure
6(d) shows that the average message latency for 4KB message with
3µs interval is 0.23ms for baseline, which is increased to 0.33ms

under the 130% background application, resulting in a 1.43x average
message latency slowdown. Figure 6(e) and (f) show that the 512KB
message suffers a maximum of 1.49x average message latency slow-
down at 450µs interval and 4MB message suffers a maximum of
1.15x average message latency slowdown at 4ms message interval.

Contiguous placement can mitigate inter-job interference for
applications with 3D stencil pattern by minimizing the number of
inter-groupmessages. In contrast, random placementmakesmost of
the messages of the target application transmitted between groups,
and compete for the shared global links with the background ap-
plication. Random placement makes the target application more
sensitive to communication traffic from other jobs sharing the sys-
tem. Therefore, in order to have a better baseline performance and
mitigate the inter-job interference, applications with 3D Stencil
pattern prefers the contiguous job placement.

4.3 Tornado
Experiment results of the target application with tornado pattern
are shown in Figure 7 using the same format as previous figures.

Baseline performance. The baseline performance in Figure 7
shows that tornado pattern prefers random placement. The contigu-
ous placement slows the average message latency at the maximum
of 17.32x, 7.96x, and 2.77x compared with the random placement
for the 4KB, 512KB, and 4MB message respectively. As the tornado

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

169

baseline
130 260 390 520

Background Application TGLL

0.0

0.2

0.4

0.6

0.8

1.0

M
sg

.
La

te
nc

y(
m

s)

baseline
130 260 390 520

Background Application TGLL

0.0

0.2

0.4

0.6

0.8

1.0

M
sg

.
La

te
nc

y(
m

s)

baseline
130 260 390 520

Background Application TGLL

0.0

0.2

0.4

0.6

0.8

1.0

M
sg

.
La

te
nc

y(
m

s)

(a) Contiguous placement (b) Random placement, broadcasting root (c) Random placement, broadcasting root
outside the background application groups in the background application groups

Figure 9: 4KB message latency of the target application with broadcasting communication pattern

0 500 1000 1500
time (us)

0

2.5

5.0

7.5

10.0

12.5

15.0
16.0
17.5

M
sg

.
A

rr
iv

al
R

at
e(

G
iB

/s
)

0 500 1000 1500
time (us)

0

2.5

5.0

7.5

10.0

12.5

15.0
16.0
17.5

M
sg

.
A

rr
iv

al
R

at
e(

G
iB

/s
)

0 500 1000 1500
time (us)

0

2.5

5.0

7.5

10.0

12.5

15.0
16.0
17.5

M
sg

.
A

rr
iv

al
R

at
e(

G
iB

/s
)

(a) Contiguous placement (b) Random placement, broadcasting root (c) Random placement, broadcasting root
outside the background application groups in the background application groups

Figure 10: 4KB message broadcasting inter-group message arrival rate at the broadcasting root group under the 520% back-
ground application. The 16GiB/s node-to-router channel bottleneck is highlighted.

pattern in this study makes each MPI process has the communi-
cation partner with a fix process ID offset, which is equal to the
group size, the contiguous placement places the source and desti-
nation processes into neighboring groups and intensifies the usage
of the global links between them. In contrast, random placement
will make source and destination pairs dispersed across the system,
directly makes the traffic more balanced on the network and results
in a shorter average message latency.

Intra-job interference.With the decrease of message interval,
the intra-job interference is increased and result in a longer average
message latency for baselines both under contiguous and random
placement. Figure 7(a) shows that under contiguous placement, the
4KB message has the baseline average message latency of 4.34µs,
53.12µs, and 125.39µs for 3µs, 1µs, and 0.5µs message intervals. The
random placement gives a better performance. Figure 7(d) shows
that the baseline average message latency for the 4KB message
case under random placement is of 2.28µs, 3.06µs and 29.97µs. The
random placement introduces less intra-job interference for the tor-
nado application because this placement helps balance the message
traffic across the network.

Inter-job interference. Although the random placement can re-
duce intra-job interference, it causesmore inter-job interference and
makes the target application more susceptible to the background
application. Figure 8 presents the results of the maximum slowdown
of the average message latency caused by the inter-job interference
under two placement policies for different target application mes-
sage sizes and intervals. Random placement always causes a higher
performance degradation. Under the contiguous placement, the
background application introduces on average of 1.2x maximum
slowdown compared with an average of 2.4x maximum slowdown
under the random placement. On extreme case, the random place-
ment can cause up to 8.22x slowdown in the 512KB case with 150µs
interval, whereas contiguous placement only results in a maximum
of 1.52x slowdown.

The random placement for the application with tornado commu-
nication pattern principally gives a better average performance at
the cost of making the target application more sensitive to inter-job
interference. For worst case scenario, the average message latency
can be prolonged by 8 times compared with baseline performance.

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

170

On the other hand, contiguous placement introduces larger intra-
job interference but greatly reduced inter-job interference for the
tornado pattern.

4.4 Broadcasting
Message latency of the target application with broadcasting pattern
is shown in Figure 9. In addition, we also collect the inter-group
message arrival rate at the spine routers for both the target ap-
plication and the background application. Figure 10 presents the
inter-group message arrival rate of the target application in broad-
casting root group. The message arrival rate of the background
application is more than 50x greater than the broadcasting rate,
thus not shown in the figure. Only 4KB message results are pre-
sented as the 512KB and 4MB messages have a similar behavior
except for a longer message latency.

Baseline performance. Three baseline results in Figure 9 show
that the average message latencies under different job placement
policies are 0.27ms with less than 1% variation. This indicates that
job placement can hardly affect broadcasting performance when
the target application is the only job in the system. As the target
application is composed of 2304 processes and each group only has
384 compute nodes, most of the MPI processes are placed among
different groups. Therefore, large-scale broadcasting pattern blurs
the border between contiguous and random placement by making
the majority of messages traverse between groups and resulting in
a similar performance.

Figure 11: The 16GiB/s node-to-router channel is perfor-
mance bottleneck for the broadcasting pattern.

Intra-job interference. Intra-job interference is inevitable for
broadcasting pattern and the channel between the broadcasting
root node and its leaf router is the bottleneck. As shown in Figure
11, the compute node holding the broadcasting root is connected to
a leaf router through a single 16GiB/s node-to-router channel. As
the broadcasting root is the only process generating messages, the
target application can only inject traffic to the network at a maxi-
mum rate of 16GiB/s . However, the leaf router has 24 local links,
each of 5.25GiB/s , to spine routers and the group has 384 global
links, each of 4.37GiB/s connecting to other groups. Therefore, the
target application can never congest local or global links by itself,
and the node-to-router channel is the performance bottleneck. All
the broadcasting messages compete for this channel, on which the
intra-job interference happens.

Inter-job interference.When there are multiple jobs on the sys-
tem, the application with broadcasting pattern is more resilient to

the background traffic compared with the other patterns. The aver-
age message latency of the target application under the 520% back-
ground application is 0.27ms, 0.30ms, and 0.47ms for the contiguous
placement, and the two random placement cases: the broadcasting
root outside and in the background application groups.

Under the contiguous placement, different background applica-
tion intensities have little influence on the target application with
less than 1% average message latency slowdown as shown in Fig-
ure 9(a). This phenomenon occurs because under the contiguous
placement, the background application cannot congest the network
between groups that contain the broadcasting processes. There-
fore, no matter how heavy the background application is, local and
global links between the groups holding broadcasting processes
are under-utilized. The bottleneck of the node-to-router channel
makes the broadcasting messages spend most of their transmission
time waiting to be sent to the leaf router. Once they reach the leaf
router, network can send them to their destinations without too
much congestion. Figure 10(a) explains the above observation by
listing inter-group message arrival rate of the target application
at broadcasting root group under the 520% background applica-
tion. The average broadcasting inter-group message arrival rate
is 13.32GiB/s under contiguous placement. Notice that because
intra-group messages are not recorded, this rate is smaller than
16GiB/s . The 520% background application message arrival rate is
874.29GiB/s , which is much smaller than the group’s total global
link capacity of 384×4.37GiB/s .

Under the random placement, the 520% background application
introduces a 11.1% and a 74.1% average message latency slow-
down for the cases that the broadcasting root is outside and in
background application groups respectively. In the case that the
broadcasting root shares group with the background application,
the 520% background application has an average message arrival
rate of 1758.43GiB/s , which is greater than the group’s total global
link capacity. This leads to the congestion at the broadcasting root
group and slow down its message arrival rate, which is 7.58GiB/s
on average in Figure 10(c). Therefore, comparing the two random
placements, sharing group between broadcasting root with the
background application can cause an additional 6.67x slowdown.

5 CONCLUSION
Dragonfly+ is considered as a promising interconnect topology
for next-generation supercomputers. Although Dragonfly+ net-
works offer more path diversity than the original Dragonfly design,
they are still prone to the performance variability problem due to
their hierarchical architecture and resource sharing design. In this
study, we have enhanced the CODES Dragonfly+ module and have
quantitatively evaluated a variety of application communication
interactions on a 3,456-node Dragonfly+ system. Our study focused
on the communication interference from a user’s perspective by
examining how a target application behaves (i.e., variation of the
target application’s message latency) under various background
application intensities.

Through this study, we have the following key findings:
(1) Intra-job interference could be reduced by using different

job placement policies depending on the communication pattern of
the application. 3D stencil pattern could benefit from contiguous

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

171

placement by minimizing the number of inter-group transmitted
messages. Tornado pattern could use random placement to balance
the traffics across the network. For broadcasting pattern, the node-
to-router channel is the performance bottleneck where intra-job
interference occurs. As such, job placement policies make little
performance impact on large-scale broadcasting application,

(2) Inter-job interference problem can generally be mitigated
for applications with one-to-one and one-to-many/all communica-
tion patterns through job isolation. The average message latency
variation is small for applications with uniform random, 3D stencil
and tornado pattern, and applications with large scale broadcast-
ing pattern can hardly be affected by other jobs when they do not
share groups with other jobs. Moreover, large scale broadcasting is
also resilient to the inter-job interference under random placement,
even if the broadcasting root process shares groups with other jobs.

ACKNOWLEDGMENTS
This work is supported in part by US National Science Foundation
grants CNS-1717763, CCF-1422009, CCF-1618776. This material
is based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research,
under contract number DE-AC02-06CH11357.

REFERENCES
[1] A Bhatele. 2018. Evaluating Trade-offs in Potential Exascale Interconnect Topologies.

Technical Report. Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States).

[2] Christopher D Carothers, David Bauer, and Shawn Pearce. 2002. ROSS: A high-
performance, low-memory, modular Time Warp system. J. Parallel and Distrib.
Comput. 62, 11 (2002), 1648–1669.

[3] Sudheer Chunduri, Kevin Harms, Scott Parker, Vitali Morozov, Samuel Oshin,
Naveen Cherukuri, and Kalyan Kumaran. 2017. Run-to-run variability on Xeon
Phi based Cray XC systems. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. ACM, 52.

[4] Greg Faanes, Abdulla Bataineh, Duncan Roweth, Edwin Froese, Bob Alverson,
Tim Johnson, Joe Kopnick, Mike Higgins, James Reinhard, et al. 2012. Cray
cascade: a scalable HPC system based on a Dragonfly network. In Proceedings of
the International Conference on High Performance Computing, Networking, Storage
and Analysis. IEEE Computer Society Press, 103.

[5] Mario Flajslik, Eric Borch, and Mike A Parker. 2018. Megafly: A Topology for
Exascale Systems. In International Conference on High Performance Computing.
Springer, 289–310.

[6] Nikhil Jain, Abhinav Bhatele, Louis H. Howell, David Böhme, Ian Karlin, Edgar A.
León, Misbah Mubarak, Noah Wolfe, Todd Gamblin, and Matthew L. Leininger.
2017. Predicting the Performance Impact of Different Fat-tree Configurations.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’17). ACM, New York, NY, USA, Article 50,
13 pages. https://doi.org/10.1145/3126908.3126967

[7] Nikhil Jain, Abhinav Bhatele, Xiang Ni, Nicholas J Wright, and Laxmikant V
Kale. 2014. Maximizing throughput on a dragonfly network. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE Press, 336–347.

[8] Nikhil Jain, Abhinav Bhatele, Sam White, Todd Gamblin, and Laxmikant V Kale.
2016. Evaluating HPC networks via simulation of parallel workloads. In SC’16:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 154–165.

[9] John Kim, Wiliam J Dally, Steve Scott, and Dennis Abts. 2008. Technology-driven,
highly-scalable dragonfly topology. In 2008 International Symposium on Computer
Architecture. IEEE, 77–88.

[10] M. Mubarak, P. Carns, J. Jenkins, J. K. Li, N. Jain, S. Snyder, R. Ross, C. D.
Carothers, A. Bhatele, and K. Ma. 2017. Quantifying I/O and Communication
Traffic Interference on Dragonfly Networks Equipped with Burst Buffers. In
2017 IEEE International Conference on Cluster Computing (CLUSTER). 204–215.
https://doi.org/10.1109/CLUSTER.2017.25

[11] Misbah Mubarak, Christopher D Carothers, Robert B Ross, and Philip Carns.
2017. Enabling parallel simulation of large-scale hpc network systems. IEEE
Transactions on Parallel and Distributed Systems 28, 1 (2017), 87–100.

[12] Misbah Mubarak and Robert B Ross. 2017. Validation study of CODES dragonfly
network model with Theta Cray XC system. Technical Report. Argonne National
Lab.(ANL), Argonne, IL (United States).

[13] The TOP500 project. 2018. NOVEMBER 2018 List. https://www.top500.org/lists/
2018/11/

[14] Scinet. 2018. Niagara Supercomputer. https://www.scinethpc.ca/niagara/
[15] Alexander Shpiner, Zachy Haramaty, Saar Eliad, Vladimir Zdornov, Barak Gafni,

and Eitan Zahavi. 2017. Dragonfly+: Low cost topology for scaling datacenters.
In 2017 IEEE 3rd International Workshop on High-Performance Interconnection
Networks in the Exascale and Big-Data Era (HiPINEB). IEEE, 1–8.

[16] Xin Wang, Misbah Mubarak, Xu Yang, Robert B Ross, and Zhiling Lan. 2018.
Trade-Off Study of Localizing Communication and Balancing Network Traffic on
a Dragonfly System. In 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 1113–1122.

[17] Xu Yang, John Jenkins, Misbah Mubarak, Robert B Ross, and Zhiling Lan. 2016.
Watch out for the bully! job interference study on dragonfly network. In SC’16:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 750–760.

[18] X. Yang, J. Jenkins, M. Mubarak, X. Wang, R. B. Ross, and Z. Lan. 2016. Study
of Intra- and Interjob Interference on Torus Networks. In 2016 IEEE 22nd In-
ternational Conference on Parallel and Distributed Systems (ICPADS). 239–246.
https://doi.org/10.1109/ICPADS.2016.0040

Session on Nework Simulation/Emulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

172

https://doi.org/10.1145/3126908.3126967
https://doi.org/10.1109/CLUSTER.2017.25
https://www.top500.org/lists/2018/11/
https://www.top500.org/lists/2018/11/
https://www.scinethpc.ca/niagara/
https://doi.org/10.1109/ICPADS.2016.0040

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Dragonfly+ Topology
	2.2 CODES Simulator
	2.3 Related Work

	3 Methodology
	3.1 Dragonfly+ Module Enhancement
	3.2 Theoretical Global Link Load (TGLL)
	3.3 Background Application
	3.4 Target Application

	4 Experimental Analysis
	4.1 Uniform Random (UR)
	4.2 3D Stencil
	4.3 Tornado
	4.4 Broadcasting

	5 Conclusion
	Acknowledgments
	References

