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ABSTRACT
To meet the demand for exascale-level performance from high-
performance computing (HPC) interconnects, many system archi-
tects are turning to simulation results for accurate and reliable
predictions of the performance of prospective technologies. Testing
full-scale networks with a variety of benchmarking tools, including
synthetic workloads and application traces, can give crucial insight
into what ideas are most promising without needing to physically
construct a test network.

While flexible, however, this approach is extremely compute
time intensive. We address this time complexity challenge through
the use of large-scale, optimistic parallel simulation that ultimately
leads to faster HPC network architecture innovations. In this paper
we demonstrate this innovation capability through a real-world
network design case study. Specifically, we have simulated and
compared four extreme-scale interconnects: Dragonfly, Megafly,
Slim Fly, and a new dual-rail-dual-plane variation of the Slim Fly
network topology.

We present this new variant of Slim Fly, dubbed Fit Fly, to show
how interconnect innovation and evaluation—beyond what is pos-
sible through analytic methods—can be achieved through parallel
simulation. We validate and compare the model with various net-
work designs using the CODES interconnect simulation framework.
By running large-scale simulations in a parallel environment, we
are able to quickly generate reliable performance results that can
help network designers break ground on the next generation of
high-performance network designs.

CCS CONCEPTS
•Networks→Network simulations;Network topology types;
Network performance analysis; • Computing methodologies →
Discrete-event simulation.
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1 INTRODUCTION
When designing a new high-performance computing (HPC) system,
the choice of the underlying interconnection network is not to be
taken lightly. Performance and cost must be balanced appropriately
to prevent large bottlenecks. Moreover, different configurations of
the same topology can have varying levels of performance depend-
ing on the types of communication featured in a given workload.
Simple synthetic workloads cannot reproduce all of the complexities
found in real-world applications [14]. Thus, HPC system integra-
tors must rely on exhaustive and fine-grained simulations, testing
various configurations, topologies, and workloads to pick the right
interconnect for their system. As network features such as rout-
ing algorithms, congestion-abatement schemes, and fault tolerance
mechanisms get more complicated, predicting full-scale, real-world
performance of prospective system designs becomes even more
challenging.

We leverage the CODES (Co-Design of Exascale Storage) stor-
age and network simulation toolkit to develop, test, and evaluate
exascale topologies and technologies. CODES is a high-fidelity
network simulator built on top of the Rensselaer Optimistic Sim-
ulation System (ROSS), which is a parallel discrete event simula-
tion (PDES) framework. Previous works have implemented and
tested performance of routing schemes such as On-the-Fly Adap-
tive Routing (OFAR) [11] or Universal Globally-Adaptive Load-
balanced (UGAL) routing [29] on networks featured in the CODES
toolkit [21, 23, 24, 33]. We show that this framework can be used
to evaluate not only existing networks but also newly proposed
networks that have not yet been built, in a quick and efficient time
frame.

We propose Fit Fly, a variant of the Slim Fly network topology [3],
and compare it with state-of-the-art hierarchical networks such
as Dragonfly [18] and Megafly [28]. Fit Fly has the same basic
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topology and construction as Slim Fly but features a dual-rail-dual-
plane configuration. Fit Fly is a product of “what-if?” questions:
What if we could (1) double the network’s overall bandwidth, (2)
further reduce the average number of hops between two terminal
nodes in the network, and (3) double the number of routers to
reduce possibility of congestion?

Because of its second, independent plane of routers, Fit Fly does
incur twice the router cost, but with this cost comes twice the overall
bandwidth. Because of the way Slim Fly networks are constructed,
they already have high path diversity and low diameter. If we add
a second plane of routers “on top” of the first but with the terminal
nodes mapped in a mirrored fashion, we can further increase the
path diversity and reduce the average number of hops between
two nodes. Moreover, with the second injection rail and increased
overall bandwidth, packets can be injected into the network at a
rate much higher than a single-rail-single-plane Slim Fly network.
Additionally, we found that even at a reduced link bandwidth a
second plane of routers greatly reduced the impact of interference
traffic on application performance.

The main contributions of this work are as follows:

• A variant of the Slim Fly topology and ROSS+CODES net-
work model that enables multiple independent router planes
with multiple injection rails at each network terminal.

• An example methodology for how hypothetical questions
can be quickly answered through rapid development and
experimentation with the CODES framework. This is demon-
strated through a series of experiments on four state-of-the-
art network designs of approximately 3,000 nodes.

• A corroboration of the conclusions found in [3, 13] relating
low-diameter networks to increased performance as well as
the benefits of multiple router planes in combating network
congestion.

• Evaluation of Slim Fly and Fit Fly with comparable overall
bandwidth showing that the increased performance of Fit
Fly over Slim Fly can be maintained even with reduced-cost
hardware.

2 RELATEDWORK
Work on simulating dual-rail dual-plane fat tree networks [13]
identifiedmany potential benefits to the extra bandwidth and router-
buffer space supplied by a second, independent, plane of routers.
The authors did mention, however, that whether any performance
benefits were realized depended on the supplied workload.

Fit Fly is a variant of the Slim Fly topology [3], which is a net-
work class that features a low diameter. In their work, the authors
show that lowering the diameter of a network can reduce not only
the latency of operations on the network but also the cost of the
network in terms of both construction and operating energy.

Being able to answer hypothetical “what-if?” questions was amo-
tivating point for the CODES toolkit [1], and evidence supporting
the value of these types of ventures has been presented in several
works. In [24] the authors describe tests of various networks on
varying workloads including synthetic and HPC network traces.
They show that CODES can be used by network designers to gain
crucial insight about prospective network designs in an efficient
manner.

The authors of [14] argue that testing networks with a diverse set
of workloads and configurations is important to obtaining reliable
predictions of real-world network performance. They introduce
TraceR and use it to add support for more types of HPC traces into
CODES.

In addition to the CODES simulator used by this work, there are
many other network simulation tools with similar goals and uses.

BigNetSim [6], a PDES system based on the Pose simulation
environment provides packet level simulation with sequential, con-
servative parallel, and optimistic parallel execution modes. It fea-
tures several synthetic traffic generators as well as application trace
support.

INSEE [26], is a network simulation and evaluation environment
that joins a functional simulator and traffic generator into one sim-
ulation system. While it only operates under sequential execution
it consumes very little memory due to its functional nature. The au-
thors note that a 64,000 node simulation was run while consuming
only 2GB of memory.

BookSim [16], is a sequential-execution-only network simulator
with similar traffic generation and application trace features. While
it only works sequentially, it is a cycle-accurate flit-level simulator
making its results very reliable. This does, however, limit the overall
size of simulatable networks.

More information on various tools and systems for simulating
interconnection networks, as well associated challenges, can be
found in [2].

3 PARALLEL SIMULATION BACKGROUND
Accurately measuring performance metrics on varying network
models with multiple workloads and configurations requires fine-
grained simulation. The more detail that a simulation has, the more
complicated the model and the more technical overhead required
to run it.

To complete all necessary simulation runs in a timely manner,
one would like to be able to run simulations spread across multiple
processing nodes. PDES is one possible approach to parallelizing
a simulation model. In PDES, any interaction between entities is
considered an event. Every event has a timestamp representing the
time within the global simulation that the event occurred.

We utilize ROSS [4] as the core simulation framework. ROSS
abstracts a simulation into logical processes (LPs). Each LP repre-
sents an entity in the simulation, for example, a network switch, a
network terminal, or a workload server. The set of all LPs is divided
among processing elements (PEs), which process events scheduled
by their respective LPs in timestamp order. There is one PE per phys-
ical MPI rank for the execution of the simulation. Within each PE
is an additional organizational abstraction called kernel processes
(KPs). KPs are a sort of container for LPs and aid in organization
and synchronization of LPs during simulation.

ROSS allows for sequential, conservative, and optimistic execu-
tion. Sequential execution maps all LPs to a single PE, and events
are deterministically executed in exact timestamp order. Since all
LPs process and schedule events using the same clock, causality is
never infringed upon.

Conservative execution is a type of parallel execution that has
additional synchronization overhead to prevent events from ever



being processed out of order across all PEs. Because of this layer of
synchronization, causality of events is always correct in this mode.

Optimistic execution allows each LP to schedule events accord-
ing to its own local clock. Therefore, PEs could process events in
an order that disagrees with causality on other PEs. Given rela-
tively infrequent causality errors, optimistic execution is faster
than conservative since the latter has a much higher synchroniza-
tion overhead. Performance of optimistic execution is hindered by
the frequency of causality errors, because these must be handled
before the simulation can progress. ROSS handles causality errors
through reverse computation [5] as an optimization of the Time
Warp protocol [15].

When out-of-order events are detected, all events resulting from
such a conflict must be undone, in other words, reverse computed,
until the state of the simulation is what it was just before the
incorrect event was scheduled. Each LP is programmed by the
model developer with a reverse-computation handler that gives
the LP the functionality required to undo an event. This reverse
handler typically just undoes any LP state changes made by the
forward event handler.

ROSS gives each LP its own set of random number generators
(RNGs) that can be independently rolled back any number of times
to deterministically reproduce the same sequence of random num-
bers after being rolled back.

A simple example of a ROSS PDES simulation is a toy random-
packet-routing model with each LP in the simulation representing
a single router. Routers forward packets to each other randomly
through events and keep track of how many packets they received.
When the simulation is forward progressing, router LPs will receive
a packet from a neighboring router. They must then (1) increment
its received packet count, (2) randomly pick a new neighbor to
forward the packet to, and (3) schedule and send the packet in a
new event to the chosen neighbor. When ROSS detects that an
event was processed in an order that conflicts with causality, router
LPs then have to undo the conflicting events by (1) decrementing
its received packet count; (2) rolling back the RNG used to pick a
neighbor; and (3) sending an anti-message to the previously chosen
neighbor, signifying that the resulting message was sent in error.

The Fit Fly model, as well as the Slim Fly model that it is derived
from, was developed by using CODES [1]. CODES is a simulation
toolkit built on top of ROSS to enable easier development of HPC
network and storage system models [30]. With CODES, users can
evaluate features and behavior of network models with varying con-
figurations and HPC workloads. The feature set of CODES is wide
ranging. It includes data collection services, a reverse computation
stack to simplify complex LP state rollback behavior, and tools for
generating synthetic traffic as well as replaying HPC application
traces. The supported workloads can be run on a given network
independently or simultaneously with arbitrary endpoint allocation
mapping to help simulate real-world usage and performance.

The CODES framework maps MPI workload LPs, each represent-
ing the MPI ranks that would be operating on physical compute
nodes of a given network, to terminal node LPs in the network
model. The workload LPs operate as the origin and final termina-
tion of messages in the network. When a workload LP generates a
message, CODES passes the message to the mapped terminal node
for injection into the network.

4 FIT FLY NETWORK MODEL
The Fit Fly model is an enhanced version of the Slim Fly model
previously added to the network set of CODES [33]. The topology
of a Fit Fly network is thus similar to that of Slim Fly, with a lot
of overlapping details. Unless otherwise specified, any aspect that
applies to Slim Fly also applies to Fit Fly.

Table 1: Description of symbols used to define Slim Fly and
Fit Fly networks

h Nodes connected per router
P Number of independent router planes
Nrp Total routers per plane
Nr Total routers in network (Nr = Nrp · P )
Nh Total nodes in the network (Nh = Nrp · h)
k ′ Router network radix
k Router radix (k = k ′ + h)
q Prime power

The most critical difference between Slim Fly and Fit Fly is that
the latter has at least two independent router planes and rails
whereas the default Slim Fly model only has one. Each plane con-
tains Nrp routers, which are connected only to other routers in the
same plane. While Fit Fly has multiple router planes, the total num-
ber of nodes in the network remains the same. Nodes, or terminals,
within the network are mapped to routers in each plane by using a
scheme detailed in Section 4.2.2.

4.1 Slim Fly Background
In a work that introduced the Slim Fly topology, Besta et al. [3]
argued that lowering the network diameter could be beneficial in
several ways. First, the lowered network diameter could translate to
reduced latency because, on average, fewer hops would be traversed
by packets. As a result, packets would be less likely to interfere
with each other. Second, fewer routers are necessary to create a
connected network, so there is a reduced cost in terms of up-front
construction aswell asmaintaining energy costs. Besta et al. showed
that a low-diameter network could be designed without sacrificing
high overall bandwidth and while simultaneously reducing costs.

The main objective in the design of the Slim Fly topology was
to maximize the number of endpoints Nh with a given network
diameter D and vertex (router) radix k . (For notation, see Table 1.)
Besta et al. [3] drew parallels between this objective and that of
the degree-diameter problem [20]. They thus decided to use graphs
related to that problem for the backbone of Slim Fly. In order to
maximize the number of endpoints but also guarantee the low
diameter property, the network is constructed based on a class of
diameter-2 graphs commonly referred to as MMS graphs. MMS
graphs of diameter-2 are close to the optimum size noted in the
degree-diameter problem as they approach what is referred to as
the Moore bound [19].

4.2 Slim Fly Topology
Slim Fly network routers are divided into local groups, each with a
certain degree of local connectivity. The set of all local groups is



divided between two subgraphs that, for ease of reference, we will
call the α and β subgraphs.

Each router in a local group also has a certain degree of global
connectivity. We define a global connection as any router-router
connection that spans between two local groups. Similarly, local
connections are defined as any router-router connections that fall
within a local group. In Slim Fly, there are no connections between
groups within the same subgraph.

The result of these specifications is a bipartite graph with global
connections spanning the two subgraphs and several local groups
within each subgraph with local connections between routers in
each group.

Each router also has a certain number of terminal nodes con-
nected to it. Figure 1a shows an example Slim Fly layout. Labeled are
the α and β subgraphs, each with four router groups of four routers.
Each router in this example has a single terminal host attached. The
exact connections from router to router, both within local groups
and globally, are not shown in detail because the construction is
not trivial. Details of this construction are given in Section 4.2.1.

4.2.1 Constructing a Slim Fly-Class Network.
Given the correct parameters for generation of the topology, the
simulation model will calculate the nontrivial link structure and
connect the router LPs to their corresponding neighbors. But find-
ing the correct parameters to input is itself nontrivial. To determine
the correct input parameters to define the network, we follow the
construction-simplified methodology for Diameter-2 MMS graphs
laid out in greater detail in [3]. This process comprises five steps.

1. Choose the number of planes p that will exist in the network.
Standard Slim Fly has a single plane of routers, whereas Fit Fly has
at least two.

2. Find a prime power q = 4ω +δ , where δ ∈ {−1, 0, 1}, such that
Nrp = 2q2 is satisfied for the desired number of routers per plane.

3. Construct a Galois field of order q. Let Fq be such Galois
field. Also, find the primitive element ξ that generates it. ξ is an
element that generates all other elements of the set. More formally,
all nonzero elements of Fq can be written as ξ i , where i ∈ N.

4. Utilizing ξ , construct sets X and X ′, known as generator sets.
These generator sets specifically will be used to determine router-
router connections within a single network plane using Equations
1–3.

5. Connect terminals sequentially to routers, reversing the order
for each consecutive plane.

We can assign each router in the network with four coordinates
(s,x ,y,p), where s ∈ {α , β} indicates which of the two subgraphs
the router is in. x ∈ {0, . . . ,q − 1} and y ∈ {0, . . . ,q − 1} represent
the local group that the router resides in and its position within
the group, respectively. The fourth coordinate, p ∈ {0, . . . , P} rep-
resents the network plane. Since each plane’s router connections
are independent and identically computed, this process is repeated
for each plane p.

router(α ,x ,y,p) connected to (α ,x ,y′,p) iff y − y′ ∈ X (1)
router(β,m, c,p) connected to (β ,m, c ′,p) iff c − c ′ ∈ X ′ (2)
router(α ,x ,y,p) connected to (β ,m, c,p) iff y =mx + c (3)

We utilize Equation 1 to compute the intragroup (local group)
connections of subgraph α . Similarly, Equation 2 computes the
intragroup connections within subgraph β . Equation 3 determines
the connections between the two subgraphs. A toy example of how
the connections can be visualized is presented in Figure 2.

4.2.2 Fit Fly: Additional Rails and Planes.
Unless otherwise noted, Fit Fly refers to a Slim Fly networkwith two
independent planes of routers as well as two injection rails on each
terminal for introducing and receiving traffic to/from the network.
This makes Fit Fly a dual-rail-dual-plane network by default, but it
can also be generalized to refer to a multi-rail-multi-plane Slim Fly
network of arbitrary order.

As mentioned in Section 4.2.1, Equations 1–3 are used to deter-
mine the connectivity within a single network plane. Since Fit Fly
has at least two planes, we must perform the same calculations for
each plane. We emphasize that there are no connections between
any two routers on separate planes.

What joins the planes together to form a single cohesive net-
work are the terminals. The multiple planes share the same set of
terminal nodes. Figure 1 shows a general layout of both Slim Fly
and Fit Fly. In Figure 1a each terminal has a single connection to
a router, following the standard Slim Fly design. Figure 1b shows
each terminal having a connection to a single router on each plane.

While the router connections within each plane are identical,
the mapping of terminals to routers in each plane is not. When
connecting terminals to a Fit Fly network, the terminals are con-
nected via two schemes depending on the plane being linked to. If
we number the planes with the ID p in the range [0,P ), the mapping
is as follows. In even-numbered planes, terminals are mapped with
the default Slim Fly scheme; this means that terminal node 0 is
connected to router (α , 0, 0, p) and so on. In odd-numbered planes,
however, terminals are mapped in reverse; terminal 0 is connected
to router (β , q − 1, q − 1, p) and so on in those planes. This scheme
increases the overall path diversity and reduces the average hop
count.

4.3 Routing and Planar Selection
Currently three algorithms for packet routing within a plane are
implemented in the Slim Fly and, by extension, Fit Fly models: min-
imal, nonminimal, and adaptive. These routing algorithms remain
unchanged from previous work [33].

While Fit Fly utilizes the same routing algorithms as does Slim
Fly on a per plane basis, an additional scheme must be in place in
order to determine which rail, and consequently which plane, a
packet will be passed through at the originating terminal. Three
different schemes have been implemented for this selection: PATH,
CONGESTION, and RANDOM. The best choice of planar selection algo-
rithm depends on what type of experiments are to be performed.

4.3.1 PATH Planar Selection.
When the network simulation is configured to utilize the PATH
selection algorithm, the originating terminal evaluates the minimal
path length to the destination terminal along each rail. The shortest
path is then chosen. In the event of a tie for the shortest path, the
CONGESTION algorithm is used.
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Figure 1: General layout of the Slim Fly and Fit Fly topologies. Networks shown are simplified for ease of understanding;
normal networks will have far more routers and terminal nodes per router. Subfigure (a) shows an example of the Slim Fly
topology. Each terminal has a single connection to a router (single-rail) in either subgraph α or subgraph β . Subfigure (b) shows
an example of the Fit Fly topology. Each terminal has two connections (dual-rail) to routers, one connection to a router in each
of two planes of independent routers (dual-plane). One distinction of Fit Fly is that the second plane of routers is identical to
the first but mirrored, increasing the total path diversity further.
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Figure 2: Example visualization showing the three distinct
ways connections could be determined. Many global connec-
tions are not shown for simplicity. Note that this is for a sin-
gle plane, denoted by the fourth coordinate. The same pro-
cess is used for all planes, and there are no connections be-
tween routers on different planes.

4.3.2 CONGESTION Planar Selection.
The CONGESTION scheme evaluates the number of packets set for
injection along each rail at the originating terminal. Whichever rail
has the fewest number of packets awaiting injection will be chosen.
This method is intended to increase the load-balancing properties
of the network and prevent performance degradation from a single
rail becoming overly congested.

4.3.3 RANDOM Planar Selection.
A more trivial way to balance load across the various planes is to
allow for the originating terminals to select the rail of injection
uniformly at random.

5 VALIDATION
The Slim Fly CODES network model has previously been validated
against an independently developed Slim Fly simulation for min-
imal, nonminimal, and adaptive routing [17, 33]. Fit Fly utilizes
the same base model as Slim Fly with minimal changes to enable
links to the additional rails/planes. Because no real-world Fit Fly
model or other simulation exists, validation can be performed only
in comparison with the Slim Fly model itself.

Since Fit Fly’s main feature is its increased overall bandwidth, we
have performed a set of offered versus accepted load experiments.
These experiments show that the additional rails and planes do, in
fact, yield a greater accepted load amount that is proportional to

the number of rails in the network. While Fit Fly generally refers to
dual-rail-dual-plane Slim Fly, we have expanded the model to allow
for arbitrary number of rails/planes to show flexibility. Figure 3
shows the results of these runs. Accepted load was measured by
counting the number of bytes received by terminals and dividing by
the duration that the count was measured. Additional rails give the
networks greater capacity and overall bandwidth and are therefore
able to accept greater amounts of offered load.
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Figure 3: Slim Fly, dual-rail, quad-rail, and octo-rail Fit Fly
networks were offered varying loads by sweeping the mean
amount of time between when packets of fixed size were in-
jected into the networks. The number of router planes in
each network strictly equals the number of rails. Here load
is shown as a percentage of the link bandwidth (12.5 GiB/s).

6 EXPERIMENTS
In this section we describe the various experiments that we have
performed to compare the Fit Fly network model with others of
similar size, in terms of the number of both terminals and routers.

For all experiments in this work, we allocate terminals for a
primary workload and secondary background workload with the
exception of zero interference (baseline) runs. The same random
allocation map was utilized for each network.



Table 2: Configurations of Slim Fly, Fit Fly, Dragonfly, and Megafly networks used for performance comparison

Slim Fly Fit Fly Dragonfly Megafly
Router Radix 28 28 36 36
Planes 1 2 1 1
Rails 1 2 1 1
Groups 26 52 19 10
Node Count 3042 3042 3078 3240
Router Count 338 676 342 360
Global Connections 4732 9464 3078 3240
Nodes/Group/Rail 117 117 162 324
Global Connections / Group 169 169 162 324
Link Bandwidth 12.5 GiB/s 12.5 GiB/s 12.5 GiB/s 12.5 GiB/s
Nodes per Router 9 9 9 18 (Leaves only)
Routing Algorithm Adaptive (UGAL) Adaptive (UGAL) Adaptive (PAR) [35] Adaptive (PAR)
Planar Selection Scheme n/a CONGESTION n/a n/a

6.1 Workloads
The networks in this paper are evaluated with two separate HPC
network traces provided by the Design Forward Program [7]. These
traces are given as a DUMPI MPI trace format [31], which lays
out the specific details of MPI messages sent during the course of
real-world HPC applications.

We used traces from the following applications: AMG and Multi-
Grid. Note that each of these traces are sourced from applications
with multiple ranks per host but are replayed on our network mod-
els with a 1:1 rank/host ratio to spread out communication across
the network, forcing hosts from all parts of the network to partici-
pate in the primary workload.

6.1.1 Algebraic MultiGrid Solver (AMG) Workload.
AMG is an algebraic Multigrid solver miniapp for unstructured
mesh physics packages. The specific trace used in our experiments
has 1,728 MPI ranks. We map each rank to its own terminal node
in the given network. The application from which this trace was
created had a runtime of 2.2 seconds, including computation time,
with 1,728 MPI ranks on 72 hosts and 52% of the time spent on
communication. [7]

6.1.2 MultiGrid (MG) Workload.
MultiGrid is a geometric multigrid cycle miniapp from the adaptive
mesh refinement application framework BoxLib [10]. The specific
trace used in our experiments has 1,000 MPI ranks each of which,
similarly to our AMGworkload, is mapped to its own terminal node
in the simulated network. The application from which this trace
was created had a runtime of 1.4 seconds, including computation
time, with 1,000 MPI ranks on 42 hosts. The application spent 3.7%
of the time on communication [7].

6.1.3 Synthetic Workload.
In addition to the primary workloads (AMG and MG traces), we use
a synthetic uniform random workload to simulate various levels of
induced traffic load on the network. With a mean interval of 100µs,
we vary the payload size to alter the intensity of interference.

6.2 Evaluation Metrics
The three primary metrics that we analyze are the maximum com-
munication time of the primary workload, the average packet la-
tency of all packets in the network, and the average number of
hops traversed by all packets in the network. The maximum com-
munication time is the total amount of time spent by any one rank
of the primary workload from the first MPI message it sends to
the final. The average packet latency is important for qualifying
how long packets are spending in transit and in router buffers. This
metric is correlated with the communication time but is application
agnostic. The total number of hops traversed can give insight into
how much deviation packets experience as a result of the adaptive
routing algorithm due to congestion.

6.3 Other Evaluated Networks
We evaluate four state-of-the-art networks: Slim Fly, Fit Fly, Drag-
onfly, and Megafly. Since in Section 4 we already discussed the
specifics of how Slim Fly and Fit Fly topologies are designed, this
section covers some background of the latter two networks.

6.3.1 Dragonfly. The specific type of Dragonfly network that we
simulate in this work is a 1D Dragonfly topology introduced in [18].
It features a hierarchical design of groups of routers. Routers within
groups are locally connected in an all-to-all pattern. In addition to
local and terminal node connectivity, routers have some degree of
global connectivity, or links to routers in other groups. Every group
must have at least one global connection to every other group in the
network.

This type of Dragonfly network is not to be confused with the
2D-Dragonfly topology featured in the Cray XC systems known
as Cray Cascade [8]. While there are similarities, the local groups
of the 2D-Dragonfly feature a grid type connectivity instead of
all-to-all.

6.3.2 Megafly. The network type called Megafly, also known as
Dragonfly+, is a derivative of the 1D Dragonfly network introduced
in [28]. Whereas Dragonfly has all-to-all local connectivity, Megafly
features a two-level fat tree for each local group. The result is that
within each group of routers is a fully connected bipartite graph.



On one half are routers, called leaf routers, that have terminal node
connections and local connections. On the other half of the bipartite
graph are routers, called spine routers, that have global connections
to other groups and local connections. Spine routers have no ter-
minal connections, and leaf routers have no global connections.
Similarly to Dragonfly, every group must have at least one global
connection to every other group in the network.

6.4 Cross-Network Comparison
In this section we show a direct comparison of the Fit Fly model not
only to Slim Fly but also to a couple of dragonfly-class networks.
The intention is not to argue that one network is definitively better
than another but instead to show how flexible the CODES frame-
work is for quickly testing multiple types of networks with varying
workloads and interference intensities. We feel that these networks
also give some added context for the power of Slim Fly-class net-
works.

Table 2 gives the parameters of the four networks tested in this
section. Because of the difference in the guidelines or restrictions
for generating these networks, a true comparison with all aspects
of the networks being the same is difficult. As a result, our Slim Fly
network has many more global connections than either Dragonfly
or Megafly has. Fit Fly, because of its second router plane, has even
more.

The link bandwidth that we have chosen for our network con-
figurations is to match the Mellanox InfiniBand EDR specifications.
However, we have used 12.5 GiB/s instead of 12.5 GB/s for con-
figuring our networks in order to match previous experiments.
As a result, our bandwidth configurations slightly exceed their re-
spective Mellanox InfiniBand counterpart by approximately 7% but
should negligibly affect overall observed trends and final results.

Figure 4 shows the results of the experiments performed on the
AMG1728 workload.

In Figure 4a we note that the networks are closely matched at
low levels of background interference but start to exhibit some
performance loss at higher levels of traffic injection. We can see
that Fit Fly well outperforms each network, which is expected
by looking at the statistics from Table 2. We reason that Fit Fly
performed so well because of its increased overall bandwidth: it has
twice the routers and thus twice the number of links for packets to
be transmitted across and therefore less opportunity to encounter
interfering congestion.

Comparing the average number of hops traversed by packets
in the network can also give insight into how well each network
handles congestion. Figure 4c plots the average number of hops
traversed by all packets in the network, not taking into account
the different workloads. Slim Fly and Fit Fly show great advantage
over the Dragonfly and Megafly networks in this regard as well,
because of the low diameter of the Slim Fly-based topologies. Fit
Fly again takes the lead, notably because the extra routers give it a
distinct advantage for packets to be routed more directly to their
destination. With a constant packet injection in a load-balanced
network, the likelihood that any two packets will find themselves
queued on the same router decreases as the number of routers
increases.

Figure 5 shows similar results from the MultiGrid1000 trace
workload. In Figure 5a we observe that each network appears to
handle increasing levels of background traffic up to 15% of link
bandwidth unperturbed, with Fit Fly narrowly outperforming them
all. Fit Fly remains unimpeded even at the highest level of back-
ground interference. Figure 5c shows that Fit Fly did not need to
reroute many packets, on average, away from their minimal paths.

We note that the convention that CODES follows for counting
hops is that the count is incremented when received by a router
in the network—not on receipt by a terminal. Thus, a packet that
originates at a terminal node, visits two routers, and then is received
by the destination terminal will have a path hop count of two.

6.5 Equalized Bandwidth Comparisons
The configuration of Fit Fly given in Table 2 was chosen to change
as few variables as possible from the chosen Slim Fly configura-
tion. Thus, since our Slim Fly network was configured with link
bandwidth speeds close to Mellanox InfiniBand (IB) EDR 100 Gb/s
specifications, so too was Fit Fly.

This decision, however, gives Fit Fly a distinct advantage. The
amount of overall bandwidth, the total amount of bandwidth avail-
able to link any two terminals in the network, is far greater in the
case of Fit Fly. Additionally Fit Fly has a higher number of routers
than do the other networks by an order of 2.

To provide a different perspective, we perform additional experi-
ments where the bandwidths of the two networks are configured to
be mutually comparable. In one set we halve Fit Fly link bandwidths
to match Mellanox IB FDR 56 Gb/s link specifications as well as
experiments where the bandwidth of Slim Fly is instead doubled
to match Mellanox IB HDR 200 Gb/s link specifications. The result
is two pairs of Slim Fly and Fit Fly networks where the total over-
all bandwidth between networks in each pair is of a comparable
magnitude.

The first comparison uses the same Slim Fly network described
in Table 2 but with a modified Fit Fly network where all link band-
widths are nearly halved to match the 56 Gb/s link speed specifi-
cation. The results of these experiments are shown in Figures 6
and 7. In these figures we observe that while the networks are un-
congested, they have similar application performance in each trace.
When the network experiences higher levels of injection traffic,
however, Fit Fly is able to handle larger levels of interference, even
with a reduced bandwidth.

Similarly, if instead of halving the bandwidth of Fit Fly we double
the bandwidth of Slim Fly to the level of Mellanox IB HDR 200 Gb/s,
we observe the same phenomenon. Normalizing for bandwidth
shows that bandwidth is only part of the story. With the total
amount of bandwidth between the two networks kept at comparable
levels, the only true difference between the two networks is the
additional plane and rail that Fit Fly has over Slim Fly.

7 DISCUSSION
The demand for stronger performance from HPC systems continues
to grow. Building exascale level systems and overcoming the chal-
lenges associated with that endeavor will require a lot of innovative
techniques and ideas.
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Figure 4: Synthetic interference experiments on the AMG1728 trace workload with 1,000 synthetic background ranks. Each
synthetic rank injects packets into the network at a fraction of the total link bandwidth of 12.5 GiB/s (≈InfiniBand EDR). The
same workloads and allocations were used across four networks.
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Figure 5: Synthetic interference experiments on the MultiGrid1000 trace workload with 1,000 synthetic background ranks.
Each synthetic rank injects packets into the network at a fraction of the total link bandwidth of 12.5 GiB/s (≈InfiniBand EDR).
The same workloads and allocations were used across four networks.
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Figure 6: Synthetic interference experiments on the AMG1728 trace workload with 1,000 synthetic background ranks. Link
bandwidth of Slim Fly in this case is 12.5 GiB/s (≈InfiniBand EDR) while Fit Fly is 7 GiB/s (≈InfiniBand FDR). Total aggregate
bandwidth is calculated by BL · P , where BL is the bandwidth of each link in the network.
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Figure 7: Synthetic interference experiments on the MultiGrid1000 trace workload with 1,000 synthetic background ranks.
Link bandwidth of Slim Fly in this case is 12.5 GiB/s (≈InfiniBand EDR) while Fit Fly is 7 GiB/s (≈InfiniBand FDR). Total
aggregate bandwidth is calculated by BL · P , where BL is the bandwidth of each link in the network.
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Figure 8: Synthetic interference experiments on the AMG1728 trace workload with 1,000 synthetic background ranks. Link
bandwidth of Slim Fly in this case is 25 GiB/s (≈InfiniBand HDR) while Fit Fly is 12.5 GiB/s (≈InfiniBand EDR). Total aggregate
bandwidth is calculated by BL · P , where BL is the bandwidth of each link in the network.
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Figure 9: Synthetic interference experiments on the MultiGrid1000 trace workload with 1,000 synthetic background ranks.
Link bandwidth of Slim Fly in this case is 25 GiB/s (≈InfiniBand HDR) while Fit Fly is 12.5 GiB/s (≈InfiniBand EDR). Total
aggregate bandwidth is calculated by BL · P , where BL is the bandwidth of each link in the network.



We have performed several experiments in order to answer a
“what if?” question. These include comparing the performance
of our new implementation with state-of-the-art networks and
determining what makes this new model so high-performing.

7.1 Comparing With Other Networks
It is valuable to see how a new idea might compare with old ideas.
To do so, we compared Fit Fly with its originating model, Slim Fly,
as well as two similarly sized Dragonfly-class networks.

The Dragonfly network, for example, is currently slated as the un-
derlying model for the upcoming Cray Slingshot interconnect [12].
Megafly, or Dragonfly+, is also a contender as the skeleton for
future exascale-level HPC systems [9, 25]. The results of these ex-
periments showed that the Slim Fly model itself is competitive with
both Dragonfly and Megafly. It matched their performance in both
the AMG and MultiGrid trace workloads in low interference studies
and outperformed them in higher interference cases. Overall we
observed a reduction in maximum communication by to up to 50%.

Fit Fly, by adding an additional plane of independent routers,
showed great resilience to high levels of interference. A 72.5% in-
terference traffic run was performed on the Slim Fly and Fit Fly
networks to extend Figures 4 and 5 but was not included because
the Dragonfly-class networks had such difficulty completing the
workloads with that level of interference.

We note that occasionally the Fit Fly average hop count for the
baseline 0% background traffic was actually higher than subsequent,
more intense, interference runs. This is counterintuitive and is
likely a result of an overly aggressive CONGESTION planar selection
scheme choosing a worse path to avoid small levels of congestion.

Because the Dragonfly-class networks had such difficulty han-
dling the high levels of interference, we stopped the simulations at
1 second (simulation time). Even if we let the simulations complete,
it would be difficult to represent the accurate performance metrics
while also maintaining the clarity needed to compare Fit Fly with
the other networks. For transparency we have included the results
of those runs in Table 3.

Table 3: Maximum communication time with synthetic in-
terference injected at 72.5% of link bandwidth (extension of
Figures 4 and 5)

Trace Workload Slim Fly Fit Fly Dragonfly Megafly
AMG1728 28.4 ms 1.4 ms >1 s >1 s
MultiGrid1000 20.3 ms 5.4 ms >1 s >1 s

7.2 Comparing with Slim Fly
As noted in Section 6.5, the comparisons made between the Slim Fly
and Fit Fly networks following the configurations in Table 2 give
Fit Fly a distinct advantage in total bandwidth and router count.

The results of the experiments between Slim Fly and Fit Fly with
comparable aggregate bandwidths show that bandwidth alone is
not why Fit Fly performs so well compared with its single-rail-
single-plane counterpart. Looking at the average number of hops
traversed by packets in the networks of Figures 6, 7, 8, and 9, we

observe that Fit Fly consistently has a lower hop count than its Slim
Fly counterpart has.

With aggregate bandwidth made comparable between the two
networks, the only other difference is the total number of routers
from the second plane. The higher number of routers mean that
there is a lower chance of any two packets sharing a buffer on the
same router. Because of the increased number of routers, Fit Fly
is able to keep the average number of hops that packets traverse
lower, typically, than that of Slim Fly and thus is capable of handling
greater levels of traffic even with slower, less expensive links.

We note that the performance of the reduced link bandwidth Fit
Fly is far better than that of Slim Fly at high levels of interference
in these experiments but is beaten, slightly, by Slim Fly at lower
levels of interference. We suspect that this is a result of CODES
using link bandwidth for the speed of transmission of data from the
workload server and the terminal node instead of the total injection
bandwidth.

We also note that at extreme interference workloads, the average
hop count sometimes decreases. We believe this is a result of the
primary workload finishing and the remaining queued packets from
the background traffic working their way through the network
without as much contention.

7.3 Cost Comparison
Cost is an important consideration when comparing Fit Fly with
the other networks. To give an approximation of how much each
of the networks tested in this work would cost to build, we have
created a virtual shopping cart of network switches and links using
Mellanox’s online store [32]. The bandwidths configured for the
networks in Table 2 equate to Mellanox IB EDR-class interconnect
hardware. Additionally, we want to consider whether the reduced-
bandwidth Fit Fly network could be a decent compromise between
expense and performance using cheaper Mellanox IB FDR-class
hardware.

In Table 4 we give the estimated cost to construct the various
networks in this paper—excluding a Slim Fly HDR system since the
Mellanox online store had no official quote for that hardware at the
time of writing.

Slim Fly, with its lower number of links and routers, wins the
“least-expensive” award, followed by Dragonfly, Megafly, and finally
Fit Fly. It is unsurprising that Fit Fly loses a flat cost comparison.
But even the less expensive Fit Fly FDR system outperformed all
the other networks—enough so that even cheaper interconnect
hardware could still potentially outperform the state of the art
without incurring too much increased expense.

With the strong performance of Fit Fly taken into consideration,
the additional costs of Fit Fly (which can be reduced while main-
taining good performance by using less expensive hardware) could
be worth considering for many HPC system integrators.

7.4 Parallel Simulation Advantages
All experiments in this work were performed by using the ROSS
and CODES simulation frameworks. A primary feature of this sim-
ulation system is its built-in capability for parallelization. Large
simulations stand to benefit greatly from the added processing
power to handle the increased number of events.



Table 4: Cost breakdown of the various networks tested in this paper.

Slim Fly EDR Fit Fly EDR Fit Fly FDR Dragonfly EDR Megafly EDR
Links 6,253 12,506 12,506 7,524 8,100
Routers 338 676 676 342 360
Cost per Link $134 $134 $86 $134 $134
Cost per Router $25,633 $25,633 $19,803 $25,633 $25,633
Total Link Cost $837,902 $1,675,804 $1,075,516 $1,008,216 $1,085,400
Total Router Cost $8,663,954 $17,327,908 $13,868,828 $8,766,486 $9,277,880
Total Network Cost $9,501,856 $19,003,712 $14,462,344 $9,774,702 $10,313,280

To qualitatively show the type of speedup gained from running
simulations in parallel, we performed the simulations in Section 6.4
in both sequential and parallel across 24 processing cores on our
32-core Intel Xeon E5-2640 v3 CPU server at 2.60 GHz with 110
GB of total RAM. Full scaling analysis of ROSS, CODES, and the
CODES base Slim Fly model which Fit Fly is iterated from have
been performed in previous works [4, 22, 27, 33, 34] and was not
performed for this work due to time and space constraints.

The results of this comparison are shown in Figure 10. Optimistic
execution granted great speedup (≈7x) in these simulations, which
allows for rapid feedback. The longest-running simulation overall
was the 72.5% interference run on the 25 GiB/s configured Slim Fly
network in Figure 8a, which came in at 99,478 seconds in optimistic
mode. For the sake of time, a sequential run was not attempted for
comparison.

Parallel simulation even has an advantage over running multi-
ple sequential simulations at once in the form of reduced overall
memory consumption. A single parallel simulation largely needs
only to allocate extra memory for event buffers for each PE while
multiple sequential simulations reinstantiate the entire simulation
for each process.

ROSS+CODES is flexible and allows researchers to choose the
execution mode that best suits their needs.
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Figure 10: Simulation runtime comparison between sequen-
tial and optimistic (parallel) execution. Times are averaged
across the four networks tested in Section 6.4. Sequential
simulations are executed on a single PEwhile the optimistic
simulations were spread across 24 PEs.

8 CONCLUSION
To summarize, we present Fit Fly, an enhanced Slim Fly simulation
model that enables use of multiple independent router planes and
multiple rails for packet injection. To facilitate proper utilization of
these added features, we have included three schemes for dictating
which rail and consequently which plane any given packet will be
injected on.

We include a method to increase overall path diversity of the Fit
Fly network by providing additional rules for how terminal nodes
are connected to routers on each plane.

The new network model was validated against the previously
validated Slim Fly network model by injecting varying levels of
traffic into the Fit Fly network. We observe that the accepted load
of the network scales with the total number of rails and planes.

We performed multiple experiments comparing four similarly
sized networks with one another with two HPC application traces
with varying levels of background interference traffic. In these
experiments the strong behavior of Slim Fly and Fit Fly models was
noted with a distinct lead by the Fit Fly model.

Arguably the comparison of the Fit Fly model may not have
been completely fair because the total bandwidth of Fit Fly was
double that of Slim Fly. To account for this situation, we performed
experiments with Slim Fly and Fit Fly models where the total band-
width of each network was made comparable. Even with reduced Fit
Fly bandwidth or increased Slim Fly bandwidth, the Fit Fly model
had greater resilience to high levels of interference traffic. This re-
silience is observed in application performance and average packet
latency, as well as the average number of hops traversed by packets
in the network, indicating that the network did not have to divert
packets on longer paths to avoid congestion hot spots.

The additional power of Fit Fly does come at extra cost, however.
Nevertheless, we have shown that the increased network resilience
may be worth the cost of the additional router planes and that
increased power can be achieved through utilizing less expensive
lower bandwidth links.

We have shown that the CODES+ROSS framework can be a
valuable tool to test new ideas such as routing algorithms, load-
balancing schemes, and other prototypical features. Insight can be
gained by creating new or enhancing existing network models in
the CODES model lineup.

In future work, we would like to experiment with other ways
to utilize additional rails and planes, such as a quality of service
implementation at the planar selection level. Another interesting



venture would be to implement these same multi-rail-multi-plane
enhancements in other network models.

Testing new concepts and gaining real-world-scale predictions
of how they may perform are crucial to continuing innovation in
the field of interconnection networks. As congestion avoidance
mechanisms grow in complexity, accurately predicting network
behavior via mathematical analysis will become more challenging.
High-fidelity parallel simulation frameworks such as CODES give
researchers the tools necessary tomodel, test, and simulate concepts
at full scale in an efficient manner.
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