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Abstract
During long-term operation of a high-performance computing
(HPC) system with thousands of components, many components
will inevitably fail. The current trend in HPC interconnect router
linkage is moving away from passive copper and toward active
optical-based cables. Optical links offer greater bandwidth maxi-
mums in a smaller wire gauge, less signal loss, and lower latency
over long distances and have no risk of electromagnetic interfer-
ence from other nearby cables. The benefits of active optical links,
however, come with a cost: an increased risk of component failure
compared with that of passive copper cables.

One way to increase the resilience of a network is to add redun-
dant links; if one of a multiplicity of links between any two routers
fails, a single hop path will still exist between them. But adding
redundant links comes at the cost of using more router ports for
router-router linkage, reducing the maximum size of the network
with a fixed router radix. Alternatively, a secondary plane of routers
can be added to the interconnect, keeping the number of compute
node endpoints the same but where each node has multiple rails
of packet injection, at least one per router plane. This multirail-
multiplanar type of network interconnect allows the overall size of
the network to be unchanged but results in a large performance ben-
efit, even with lower-specification hardware, while also increasing
the resilience of the network to link failure.

We extend the CODES framework to enablemultirail-multiplanar
1D-Dragonfly and Megafly networks and to allow for arbitrary link
failure patterns with added dynamic failure-aware routing so that
topology resilience can be measured. We use this extension to eval-
uate two similarly sized 1D-Dragonfly and Megafly networks with
and without secondary router planes, and we compare their appli-
cation communication performance with increasing levels of link
failure.

CCS Concepts
•Networks → Network simulations;Network topology types;
Network reliability; Network performance evaluation; • Comput-
ing methodologies → Discrete-event simulation.
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1 Introduction
Simulation of current and prototypical high-performance comput-
ing (HPC) interconnect networks is a useful tool for generating
realistic performance expectations of proposed system acquisitions.
Different interconnect designs, or network topologies, have vary-
ing strengths and weaknesses with different price-to-performance
ratios. The cost of building a full-scale HPC interconnect is pro-
hibitive for the purposes of evaluation. Using simulation, one can
develop models for any arbitrary network definition and compare
them with other, previously defined models.

This flexibility allows for fast, realistic predictions of how differ-
ent topologies or network technologies may perform. For example,
one can introduce quality of service traffic classes for bandwidth
allocation or methods for the mitigation and prevention of con-
gestion. With simulation, one can answer questions about how
different network types behave at different scales, how different
routing algorithms perform, or how job placement affects perfor-
mance. It also allows for testing how the system might behave in
states of irregularity, such as in the case of inter-router link failure.

Link failure is a common occurrence in HPC systems—so com-
mon in a large-scale system that between monthly maintenance
routines, multiple faulty links may occur between routers in the
network. Thus, system builders need to know that the interconnect
they are purchasing is capable of still operating despite common
link failure. This knowledge allows them to stick to routine main-
tenance of a month or more, so as to minimize downtime caused
by the link failure, as opposed to immediately bringing parts of the
system down for emergency system repair.

Routing algorithms for HPC interconnects conventionally take
certain characteristics of networks as a given, and virtual channel
(VC) assignment can be made appropriately to avoid deadlock. In-
troducing even a single link failure into the network can potentially
reduce to zero the number of legal, deadlock-free paths for certain
routing algorithms. Also, routing algorithms that could correctly
explore all possible legal routes in typical topologies may fail to
do so in the presence of link failure. Irregular systems—those with
abnormal, arbitrary, or not uniformly defined structure—require
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additional attention when routing in order to avoid cyclic chan-
nel dependency problems such as head-of-line blocking or dead-
lock [9, 10].

Because of the need to avoid channel dependency problems,
one cannot assume that router validity is assured just because the
network is connected. A legal path between two endpoints in an
interconnect is any path that does not cause cyclic channel depen-
dencies. Existing routing algorithms, such as those in 1D Dragonfly
and Megafly, must be altered to ensure that only legal paths are
taken in the presence of link failures. If a valid legal path does not
exist, then communication (and the application making it) should
fail. Determining whether a legal path exists is a computationally
complex problem because the enumeration of all possible paths
grows significantly as the number of endpoints (and, by association,
routers) increases.

We extend the CODES [7] interconnect network simulator to
allow for links in simulated networks to be marked as failed and
for packets to be routed dynamically around failed links along legal
paths, if and only if they exist. If all legal paths for a packet between
two endpoints have at least one failed link, then communication
fails, and the simulation ends.

The network types evaluated in this work are the 1D-Dragonfly
and Megafly networks. 1D Dragonfly, like other Dragonfly-class
networks, has groups of routers in which each group is connected
to every other group with at least one global link. Within these
router groups, the 1D Dragonfly uses an all-to-all configuration for
local router links.

Megafly, also known as Dragonfly+, has the same global link
structure as 1D Dragonfly has; but instead of all-to-all links within
local router groups, it uses a 2-level fat tree configuration to form
a fully connected bipartite graph. Router responsibilities are also
divided differently in Megafly. Routers with global links, known
as spine routers, have no compute node terminal links. The other
routers, those with compute node terminal links but no global links,
are known as leaf routers. This type of link configuration is designed
to increase the scalability of a network with a lower cost [30].

In this work we study the effects of link failure in Dragonfly-class
topologies and posit a strategy for increased resilience—multiplanar
networks.

The main contributions of this work are as follows:

• Introduction of a network manager to the CODES framework
to orchestrate link failure, and identification of legal paths
given virtual channel constraints
• Extension of the CODES Dragonfly and Megafly routing
algorithms— minimal (MIN), Valiant non-minimal (VAL),
and progressive adaptive (PAR)—to route dynamically in the
presence of network link faults
• Extenion of the CODES Dragonfly and Megafly network
models to support multiplane-multirail configurations with
multiple schemes for injection rail selection
• Evaluation of multirail-multiplanar inter-job interference
performance and the effect of multiplanar configurations
on the resilience of two example Dragonfly and Megafly
networks with varying levels of link failure

2 Background

In this work, we study the effects of link failure in HPC network
interconnects made up of routers or switches connected in a spe-
cific pattern known as a network topology. Also connected to these
routers are compute node terminals that inject packets into the
network to be routed along paths to other compute nodes. In a real-
world interconnect, these packets are the carriers of information
between processes in an HPC application. We can use captured real-
world communication patterns of HPC applications for simulated
packet generation or create our own synthetic jobs to act as bench-
mark workloads in simulated networks. By simulating multiple
simultaneous workloads, we can analyze how varying intensities of
communication from different workloads interfere with each other.
Higher levels of interference reflect poorer network performance.

Simulation allows for individual packets to be injected into a
modeled network of arbitrary size. Different routing algorithms
can be applied, and various existing or proposed router and link
technologies can be evaluated quickly and easily. But there is no free
lunch: with any added complexity to what is being simulated, there
is almost always a proportional increase in cost. This frequently
comes in the form of increased runtime.

Parallelization of a simulation allows it to be spread across all
available processors in a lab machine or, if implemented properly,
across thousands of processors in an HPC cluster. Network packet
routing is a problem well suited for the use of parallel discrete event
simulation (PDES) since every interaction between entities at any
specific time can easily be represented as an event in the simulation.

The CODES interconnect network simulator utilizes ROSS [4]
as the underlying PDES engine and can thus be easily parallelized
at large scale to yield impressive strong-scaling performance bene-
fits for network modeling [32]. The granular elements of a ROSS
simulation are logical processes (LPs). Each LP represents a single
entity in the simulation. In the context of a CODES simulation,
each network switch, network terminal/node, or traffic generation
server is represented by a single LP. Each LP has its own state, and
any interaction between LPs is modeled by an event at a specific
time in the PDES simulator. LPs are grouped into abstractions called
kernel processes (KPs) that serve as an organizational structure for
synchronization of LPs during simulation. LPs and, by association,
KPs are mapped uniquely to processing elements (PEs). Each phys-
ical MPI rank participating in the execution of the simulation has
one PE.

A main tenant of PDES is its parallelism. ROSS provides a frame-
work not only for sequential, single-PE execution but also for two
modes for parallel execution. In this work we specifically use opti-
mistic parallel execution.

With optimistic parallel execution, LPs can process events at
their pace, allowing for drift in observed simulation time between
them. This approach, however, can result in out-of-order events
that threaten the validity of the simulation. ROSS resolves the issue
through the use of reverse computation [5] and the Time Warp
protocol [18] to return the simulation to a known valid state.

A general CODES simulation can be characterized by a network
of router/switch LPs connected together via links. Routers generally
each have terminal node LPs linked to them as well. Workload LPs,
each representing a simulated MPI rank, are mapped to the terminal



(a) Single-Rail-Single-Plane 1D Dragonfly (b) Dual-Rail-Dual-Plane 1D Dragonfly

Figure 1: Example layout of single-rail-single-plane (Figure 1a) and dual-rail-dual-plane (Figure 1b) 1D Dragonfly networks
with 4 routers (blue squares) per group and 4 groups per plane. There are 16 compute node hosts (red circles) attached to each
plane in a given network. In the single-rail-single-plane case, each node has one rail for injection to a router (blue squares) but
in the dual-rail-dual-plane case, each node has two rails for injection, one per plane. The high-level connection scheme of
Megafly follows similarly with the exception that routers within local groups are connected in the shape of a fully connected
bipartite graph instead of all-to-all like 1D Dragonfly.

nodes and generate traffic for injection into the network. These
workload LPs are the origin and final destination of messages that
are transmitted through the network via packets.

CODES is designed so that specific HPC interconnection net-
work topologies and technologies can be tested at realistic scales
quickly and easily with a variety of workloads and a large degree of
configuration flexibility. This simulator has previously been shown
to scale well and is capable of simulating extreme-scale HPC sys-
tems [7, 23–25].

3 Network Model

The network topologies examined in this work are the 1D-Dragonfly
and Megafly networks. Dragonfly-class networks have one particu-
lar characteristic in common: routers in the network are grouped
together into local groups with some degree of local link connectiv-
ity between them. Global link connections, those that span between
two local groups, are configured such that at least one global link
exists between any two pairs of local groups. In other words, local
groups themselves are connected all-to-all.

How these topologies differ lies in how local groups are config-
ured. In 1D-Dragonfly, routers within a local group are connected
in an all-to-all fashion. This makes the assured minimum number of
hops between any two routers in a local group equal to one. When
router groups become large, however, this results in an greater cost
because of the increased number of local links. But because the
groups are also mandated to have at least one level of all-to-all
connectivity between them, increasing the number of groups with
the aim of reducing the number of routers per group will result in
an increase in the cost associated with global links.

In contrast, the Megafly network topology has routers within
local groups connected in a two-level fat-tree configuration. As
a result, these local router links form a fully connected bipartite
graph of two types of routers: leaf routers, which have local router
and terminal/compute node links, and spine routers, which have

local router and global router links. No terminals are attached to
spine routers, and no leaf routers own any global links.

3.1 Multirail-Multiplanar Networks
This work focuses on networkswithmultiple, independent planes of
routers interconnecting a fixed set of compute nodes. Because com-
pute node hosts are shared between router planes, each node has
multiple rails for packet injection, at least one per plane. For simplic-
ity, the term multirail is often used because multirail-multiplanar
networks are a special case of the broader term. In this work we
will use multirail and multiplanar terms interchangeably, and the
number of injection rails per compute node is equal to the number
of router planes in a given network. A small scale example showing
the layout of a single-rail-single-plane 1D Dragonfly in comparison
to a dual-rail-dual-plane configuration of the same network can be
seen in Figure 1.

3.2 Benefits of Multiplanar Networks
Adding additional planes of routers has shown great ability to
reduce the effect of inter-job interference even with reduced band-
width [22]. We posit in this work that the benefits of multiplanar
networks lie in the ability not only to reduce the effect of inter-
ference but also to reduce the effect of congestion caused by link
failures. Additional planes of independent routers multiplies the
available paths between any two endpoints in the network by a fac-
tor proportional to the number of additional planes. Thus, the odds
of completely severing all legal paths between any two endpoints
are reduced.

4 Link Failures
We have extended the CODES interconnection simulation frame-
work to include an organizational class called a network manager.
This class stores all link connection information for a network, in-
cluding the failure state of the links. This data is loaded in at the start



of the simulation and is identical across all PEs in the simulation—
the state of links with regard to failure is static throughout the
simulation. Because the time periods simulated by CODES are gen-
erally less than a few seconds, we felt that enabling in situ link
failure was not crucial. Additionally, as observed in this work, the
effect of a single link failure (or any number that would reason-
ably be expected to occur in the course of seconds) is generally
insignificant to application performance.

In a realistic mid-simulation link-failure scenario, a management
communication layer may be implemented to facilitate the transmis-
sion of global knowledge. Adapting the CODES network manager
to allow for this would simply require additional ROSS events to
facilitate the transmission of knowledge to all LPs. Allowing for
in situ link failures, however, brings in new layers of uncertainty.
For example, ‘what happens to a packet that was already injected
prior to link failure and its only legal path became severed? How
this error is handled depends on the implemented communication
standard and is outside the scope of this study. Here we assume
that information regarding link failure is a priori knowledge known
by all terminals and routers in the network.

The network manager provides an interface for routers to query
for information about the network. For example, a router has a
connection manager subclass of the network manager that has
information about connections specific to it and its group and
can answer questions such as the following: What routers am I
connected to locally, and what routers am I connected to that have
a connection to a specific group? An additional parameter can be
added to these queries to take into consideration whether a link
has failed.

The new link failure module allows any link in the network to
be failed including those between terminals and routers, local links
between two routers in the same group, and global links between
routers in different groups. In this work, however, we focus solely
on link failure between local and global router to router links.

The addition of link failures to a network model poses challenges.
In CODES, most routing algorithms are implemented to take ad-
vantage of given knowledge about the network. For 1D Dragonfly,
one of these bits of design knowledge is the expectation of having
at least one global link between any two groups.

Imagine a 1D-Dragonfly network configured so that each group
is connected to every other group with exactly one global link.
Now picture a packet being generated in a group A and destined
for a router in group B. In a minimal path, it will need to traverse
exactly one global link; if that global link has failed, then the only
minimal path between any routers in group A and group B no
longer exists. Therefore, it would need to be routed nonminimally
through a router in an intermediate group. However, we also have
to be aware of any failures in a potential intermediate group. The
only global link between the intermediate group and group B may
also have failed, and hence that group would be ineligible for a
nonminimal route between groups A and B.

Unfortunately there are limitations to how packets can be routed
in these interconnects so as to avoid the performance-limiting issue
of head-of-line blocking or the performance-halting issue of dead-
lock [9]. Virtual channels, a method of virtually partitioning router
ports into subunits, are commonly used in Dragonfly networks
to avoid these issues by requiring that specific rules be followed

about what VCs to assign a packet to when routing. To avoid dead-
lock, it is crucial to avoid what is referred to as a cyclic channel
dependency [10, 21].

In order to avoid these channel dependency issues, rules are
imposed on the routing algorithms that set the maximum number
of hops allowed to be traversed within each group and how many
global hops may be utilized in routing a packet from group A to
group B. These constraints mean that though a router is technically
connected to the network, it still may not be legally accessible by
any or all other routers in the network.

If a packet is injected into a router plane and the routing al-
gorithm fails to find a legal path or if a legal path does not exist,
then the packet will reach a dead end, and the workload will fail.
Optimally, then, we would like to inject a packet only onto a router
plane that has a valid path to its destination. To do so, we need to
be able to answer two questions.

(1) Does a legal path exist between source router 𝑥 and destina-
tion router 𝑦 with at most 𝑙𝑠 local hops in group of source
router, at most 𝑙𝑖 local hops in any intermediate group, at
most 𝑙𝑑 local hops in the destination group, and exactly 𝑔

global hops?
(2) Given that a legal path matching these criteria exists, what

are the next stops from router 𝑥 that would match any path
matching the criteria?

Using constraints of the Dragonfly and Megafly networks, no-
tably that 𝑙𝑠 , 𝐿𝑖 , 𝐿𝑑 equal 1 and 2 for Dragonfly and Megafly, respec-
tively, we can simply use 𝑙 local hops per group in the problem
formulation instead of three separate variables. If we had a black-
box solution to the first question, we could know whether there
exists a minimal path within a local group (𝑔 = 0), a minimal or
near-minimal path with no intermediate groups (𝑔 = 1), or a legal
nonminimal route (𝑔 = 2) with no need to adjust any VC assignment
strategies in the network model.

4.1 Algorithmic Solution
We have developed an algorithm for solving these problems in
Dragonfly-class networks leveraging the known constraints to re-
duce the algorithmic and computational complexity. This problem
can be solved via a dynamic programming-like approach with mem-
oization/caching to quickly return an answer to a query.

Algorithm 1 solves the problem of finding the existence (and
the next hops) of a legal path defined by 𝑙 allowed local hops in
the current group and 𝐿 maximum local hops in any group visited
and with exactly 𝑔 global hops. It is a modified depth-first-search
algorithm to traverse a graph to find if the destination router 𝑦 is
reachable by 𝑥 with the given restraints.

Requiring exactly 𝑔 global hops allows us to narrow down what
types of paths will be included in our query. If we allowed it to
return paths with at most 𝑔 hops instead, then we would not be able
to prevent nonminimal intermediate group (2 global hops) paths
from being included in the query response. For the progressive
adaptive algorithm, we need to be able to compare minimal and
nonminimal paths in order to decide how to route to the final
destination.

The algorithm uses recursion, knowing that if there is a valid
local hop from the current router with the given restraints, then



there must first be a valid hop from a locally connected router with
one less local hop in the current group. Similarly, if there is a valid
global hop from the current router with the given restraints, then
there must first be a valid hop from a globally connected router with
exactly one less global hop in the path—but the number of local
hops allowed in the next current group is reset in the subproblem
because a global hop was taken.

Because this algorithm only explores potential next stops if the
link to the next stop is not failed, this algorithm will not return
any paths that would require a failed link be traversed. If there are
no valid next stops with the given constraints returned from the
algorithm, then no legal path exists with those constraints.

4.2 Algorithmic Caveats
Traditional depth-first search requires a set of visited graph nodes
to prevent cycles. Instead, we rely on the constraints to ensure legal
paths that do not needlessly route.

With 1D Dragonfly, local group hops are limited to 1, which
makes cycles or roundabout paths within a local group impossible.
In Megafly, local group hops are limited to 2; but to prevent issues
of VC dependency deadlock, all nonminimal paths through an inter-
mediate group must travel through a leaf router, requiring explicitly
2 local group hops. This means that a 2-hop detour revisiting the
same spine router A, as in the example, is mandated by the network
model.

One might wonder, then, why not just utilize known, efficient
shortest-path algorithms? Algorithms such as Flloyd-Warshall All
Pairs Shortest Path[8] can find the shortest path between any two
nodes in a graph quickly and optimally. But we have yet to find a
modification of this algorithm that can work with the necessary
constraints in order to ensure that the shortest paths found by the
algorithm are also the shortest legal paths.

One can enumerate all shortest paths and then filter out only
legal paths with this method, but doing so requires a large space
and time complexity for larger networks. If we wanted to find paths
of at least 𝐿 hops, as is the case for nonminimal routes used by
adaptive routing, we would need additional complexity.

Algorithm 1, however, is not designed to find only the shortest
paths. This algorithm could be modified to enable that by encoding
a current hop count as an input and to return the hop count when
the destination is found. Such a modification would come at great
cost to computational efficiency, however, since it would render
memoization impossible: the first found legal path (and thus the
memoized response) is not guaranteed to be the shortest. Another
way to ensure only shortest paths would be to employ a breadth-
first search approach but, again, at the sacrifice of memoization and
its computational benefits.

4.3 Routing and Planar Selection
To route correctly through a network with link failures, we leverage
Algorithm 1 to find legal paths with specific constraints in the path.
Most importantly, we specify the exact number of global hops
𝑔 in a desired path. This allows us to know whether there exist
local-group-only paths, single-global-hop paths, or two-global-hop
paths.

Enabling CODES to find legal paths given specific constraints
allows it to dynamically determine whether a legal path exists and

Algorithm 1 Finding Existence and Next Stops in Legal Path

Memoization Map of Input to Response:𝑀 (𝑖𝑛𝑝𝑢𝑡)
Maximum Local Hops Allowed per Group: 𝐿

Input 𝑖:
Source Router GID: 𝑥
Destination Router GID: 𝑦
Local Link Adjacency List for Source: 𝐴𝑙

Global Link Adjacency List for Source: 𝐴𝑔

Max Local Hops in Current Group : 𝑙
Exact Global hops in path: 𝑔

GetValid(i):
𝑉𝑛𝑒𝑥𝑡 ← Empty set of valid next hops
if 𝑥 == 𝑦 and 𝑔 == 0 then

𝑉𝑛𝑒𝑥𝑡 ← 𝑦

return 𝑉𝑛𝑒𝑥𝑡
if 𝑖 ∈ 𝑀 then

return𝑀 (𝑖)
if 𝑙 > 0 then

for 𝑙𝑖𝑛𝑘 ∈ 𝐴𝑙 do
if 𝑙𝑖𝑛𝑘 is not failed then

𝑉 ← GetValid(𝑙𝑖𝑛𝑘.𝑑𝑒𝑠𝑡 , 𝑦, 𝑙 − 1, 𝑔)
if size(𝑉 ) > 0 then

𝑉𝑛𝑒𝑥𝑡 ← 𝑙𝑖𝑛𝑘

if 𝑔 > 0 then
for 𝑙𝑖𝑛𝑘 ∈ 𝐴𝑔 do

if 𝑙𝑖𝑛𝑘 is not failed then
𝑉 ← GetValid(𝑙𝑖𝑛𝑘.𝑑𝑒𝑠𝑡 , 𝑦, 𝐿, 𝑔 − 1)
if size(𝑉 ) > 0 then

𝑉𝑛𝑒𝑥𝑡 ← 𝑙𝑖𝑛𝑘

𝑀 (𝑖) ← 𝑉𝑛𝑒𝑥𝑡
return 𝑉𝑛𝑒𝑥𝑡

to route accordingly. If enough links fail, then there may not be
any legal paths between a source and destination router; and, if any
compute nodes attached to the routers wish to communicate with
each other, the communication will fail.

This work allows for the 1D-Dragonfly and Megafly models to
feature multiple router planes servicing the same set of compute
node terminals. Nodes have a choice of what rail to inject a given
packet onto. To ensure greater resilience to link failure, we want
to inject a packet onto a plane only if we know that there is a
legal route between the source and destination compute nodes on
that plane. Algorithm 1 gives us the ability to know this prior to
injection.

Given a set of 𝑉 valid planes for injecting a given packet, we
have a variety of options for deciding the preferred plane of injec-
tion. Following similar work of enabling multirail-multiplanar Slim
Fly networks in CODES [22], we have implemented the following
schemes for injection plane selection, with a few modifications to
account for link failures.

PATH Planar Selection: The Flloyd-Warhsall shortest path
evaluation to estimate the distance between two routers can be
utilized to minimize the distance traveled by an injected packet. It
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(a) Single-Rail-Single-Plane 1D Dragonfly
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Figure 2: Single-, dual-, quad-, and octo-rail versions of 1D Dragonfly and Megafly were offered varying loads of synthetic
uniform random data by sweeping themean amount of time between when packets of fixed size were injected into the networks.
As is the case for any multirail-multiplanar networks in this work, the number of router planes in each network strictly equals
the number of rails. Offered and accepted loads are shown here as a percentage of the link bandwidth (12.5 GiB/s).

may not mean that a legal path with that distance exists, but it can
generally determine whether significant link failures would require
a great deal of routing around.

CONGESTION Planar Selection: This scheme estimates the
congestion being experienced by the number of packets set for in-
jection along each rail at the originating terminal. This estimation
is made with information from a credit-based flow control system
that allows terminals to inject on rails with less inferred back pres-
sure. This is the scheme utilized in the evaluation of multiplanar
networks in this paper.

RANDOM Planar Selection: This scheme involves trivially
selecting a valid plane at random. This naively balances load across
available planes but does not take into account any congestion
that may be present in the network at different levels on different
planes.

DEDICATED Planar Selection: This scheme allows for the
workload to select the injection rail during the creation of the
message. The network makes no alteration. If a valid path on the
given plane does not exist, then the workload will fail.

5 Validation

Without access to a physical multiplanar network, truly validating
findings from simulation is difficult. We instead rely on other factors
to ensure that adding additional rails and planes behaves in the
way that we expect.

All routing adjustments for enabling link failure were compared
with previous accepted routing implementations and return results
in line with expectations.

We ran a bandwidth-testing sanity check of our implementation
of multirail-multiplanar 1D Dragonfly and Megafly to ensure that
the accepted load of the network scales with the number of planes
in the network. If a single plane accepts some load 𝜆, we expect
2 planes to accept 2 × 𝜆. Specifically, we constructed 4 networks
of each type, 1D Dragonfly and Megafly, with varying numbers of
router planes: 1, 2, 4, and 8. We scaled synthetic uniform random

traffic injected into the network at a percentage of the link band-
width used in the network, ranging from 50% to 800%. Figures 2a
and 2b display the results of the tests. We measured accepted load
by counting the number of bytes received by terminals during a
given time window and dividing by the length of the time window.
Results are in line with expectations: greater numbers of router
planes allow for greater amounts of accepted load.

6 Experiments
CODES works with DUMPI application traces through the SST
DUMPI Trace module [31]. These traces are captured from com-
munication patterns of real HPC applications and grant far greater
understanding of how real-world applications might perform on
given networks than what is typically achievable through basic
synthetic workloads.

We used publicly available DUMPI traces provided by the Design
Forward Program [11] of NERSC. All experiments in this work were
performed on our 40-core Intel Xeon CPU E5-2640 laboratory server.
Most simulations completed on the order of minutes run in parallel
using 10 processor cores each.

6.1 Workloads
Algebraic MultiGrid Solver (AMG) Workload: AMG is an al-
gebraic multigrid solver miniapp for unstructured mesh physics
packages. Our experiments used the version with 1,728 MPI ranks.
We mapped each rank to its own terminal node in the given net-
work. The application from which this trace was created had a
runtime of 2.2 seconds, including computation time, with 1,728 MPI
ranks across 72 hosts. About half of the time (52%) was time spent
on communication [11].

MultiGrid (MG)Workload:MultiGrid is a geometric multigrid
cycle miniapp from the adaptivemesh refinement application frame-
work BoxLib [14]. Our experiments used the version with 1,000
MPI ranks, each of which, just as we did for our AMG workload,
was mapped to its own terminal node in the simulated network.
The application from which this trace was created had a runtime



Table 1: Configurations of 1D-Dragonfly andMegafly networks utilized in this work for performance and resilience comparisons.
Note that in some experiments dual-rail configurations were written to use reduced 7.0 GiB/s bandwidth as per InfiniBand FDR
specifications.

1D Dagonfly 1D Dragonfly - Dual Plane Megafly Megafly - Dual Plane
Router Radix 36 36 36 36
Planes 1 2 1 2
Rails 1 2 1 2
Groups 19 38 10 20
Node Count 3078 3078 3240 3240
Router Count 342 684 360 720
Nodes per Router 9 9 18 (Leaves only) 18 (Leaves only)
Global Connections 3078 6156 3240 6480
Global Connections / Group 162 162 324 324
Global Connections 9 9 36 36
Between Groups
Link Bandwidth 12.5 GiB/s 12.5 GiB/s (EDR) 12.5 GiB/s 12.5 GiB/s (EDR)

7.0 GiB/s (FDR) 7.0 GiB/s (FDR)
Routing Algorithm Adaptive (PAR) [19] Adaptive (PAR) Adaptive (PAR) Adaptive (PAR)
Planar Selection Scheme n/a CONGESTION n/a CONGESTION

of 1.4 seconds, including computation time, with 1,000 MPI ranks
across 42 hosts. The application spent very little (3.7%) of the time
on communication [11].

Synthetic Workload: To simulate other random jobs in the net-
work, we injected random traffic using a uniform random synthetic
traffic generator. We fixed the mean interval time at the CODES
default of 100 𝜇s but increased the overall payload of injected mes-
sages to vary the intensity of interference.

6.2 Evaluation Metrics
Higher levels of link failure with high levels of injected traffic can
result in congestion. We seek to determine how congestion-caused
inter-job interference is affected by increasing levels of link failure.

To evaluate the resilience of these networks, we used various
application performance metrics including the average number
of hops traversed by packets, the mean latency of all packets in
the simulation, and the maximum communication time (the maxi-
mum amount of time spent by any one primary workload process
participating in the workload). These metrics can be measured on
networks with a range of link failures and can be directly compared
with networks without link failures.

6.3 Studies Performed
This work combines a standard interference study of single- and
dual-plane 1D-Dragonfly and Megafly networks with a study of
interference on the same networks with varying degrees of link
failure.

In the link failure study, we also looked at how the same level of
link failure affects a reduced-bandwidth version of the dual-planar
network configurations. The aim is to show how the additional
costs of building multiple router planes can be mitigated by using
cheaper hardware while maintaining performance benefits similar
to those of the standard multiplane configurations as noted in [22].

In our experiments we fail router-router links uniformly at ran-
dom across the entire tested network until the desired percentage

of failed links was met. Information about failed links was gener-
ated by using a script and was loaded by the CODES simulation.
It is important to note that for our experiments, the number of
failed links are specified as a percentage of the number of links in
a single-plane network.

7 Discussion
To discuss the findings of this work we first, in Section 7.1, present
an inter-job interference study as a baseline comparison of single-
and dual-plane 1D-Dragonfly and Megafly networks with no link
failures. We then, in Section 7.2, present a network resilience study
by taking the the highest level of interference observed from Sec-
tion 7.1 and apply it to single- and dual-plane networks with in-
creasing levels of link failure.

Table 1 shows the network configurations used. Our tested single-
plane networks feature links with bandwidths comparable to Infini-
Band EDR (12.5 GiB/s). Our tested dual-plane networks consist of
two versions each, one with the same InfiniBand EDR specification
links and the other using only InfiniBand FDR equivalent links (7
GiB/s).

7.1 Single-Rail to Multirail Comparison
We begin by comparing single- and dual-plane 1D-Dragonfly and
Megafly networks with zero-failed links. Our aim is to show a
baseline standard of benefit that can be expected from a multiplanar
network variation.

Because of the different balancing recommendations for generat-
ing these networks, creating a truly fair comparison of the different
topologies is difficult. To create a Megafly network with approx-
imately 3,000 compute node terminals with a 36 router radix (to
utilize the same hardware specifications as the tested 1D Dragonfly),
we must have 36 global connections between any two groups in
the network. 1D Dragonfly, on the other hand, has only 9, and thus
path diversity for inter-group messages is reduced. Nevertheless,
we attempted to generate two networks of similar capabilities.



0 2 4 7.5 15 36.25
Background Injection (% Link Bandwidth)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ax

. C
om

m
un

ic
at

io
n 

Ti
m

e 
(m

s)

Comm. Time - AMG1.7K - Single and Multi-Rail Networks
1D Dragonfly (1-Rail)
1D Dragonfly (2-Rail)
Megafly (1-Rail)
Megafly (2-Rail)

(a) Application Communication Time

0 2 4 7.5 15 36.25
Background Injection (% Link Bandwidth)

0

50

100

150

200

250

300

350

M
ax

. L
at

en
cy

 (μ
s)

Max. Latency - AMG1.7K - Single and Multi-Rail Networks
1D Dragonfly (1-Rail)
1D Dragonfly (2-Rail)
Megafly (1-Rail)
Megafly (2-Rail)

(b) Latency

0 2 4 7.5 15 36.25
Background Injection (% Link Bandwidth)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Av
er

ag
e 

H
op

s 
Tr

av
er

se
d

Hop Count - AMG1.7K - Single and Multi-Rail Networks
1D Dragonfly (1-Rail)
1D Dragonfly (2-Rail)
Megafly (1-Rail)
Megafly (2-Rail)

(c) Hop Count

Figure 3: Synthetic interference experiments on the AMG1728 trace workload with 1,000 synthetic background ranks. Each
synthetic rank injects packets into the network at a percentage of the total link bandwidth of 12.5 GiB/s (≈InfiniBand EDR).
The same workloads and job allocation maps were used across each network.
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Figure 4: Synthetic interference experiments on the MultiGrid1000 trace workload with 1,000 synthetic background ranks.
Each synthetic rank injects packets into the network at a percentage of the total link bandwidth of 12.5 GiB/s (≈InfiniBand
EDR). The same workloads and job allocation maps were used across each network.

Because job locality plays an important role in mitigating the
effects of high network usage, we tried to choose a job-to-compute-
node mapping that is “equally poor” for all networks: namely,
random mapping. The same job-to-compute-node mappings were
used between all evaluated networks. Unfortunately, because of the
greater amount of intergroup linkage in the Megafly network, we
still expect some performance bias in favor of Megafly with this
mapping.

Figures 3 and 4 show the results of experiments performed with
the AMG1728 and MG1000 workloads with synthetic background
interference traffic on the single- and dual plane versions of 1D
Dragonfly and Megafly without link failures. Background interfer-
ence is scaled in these experiments from 0% (primary workload
only) to 36.25%. The experiments utilize the same failure-aware
routing schemes developed by using Algorithm 1.

Figures 3a and 4a show that dual-rail networks have greater
capacity than do single-rail networks to operate as if uncongested.
The network has more places for packets to exist; and so, for a
given set of packets, the odds of two packets finding themselves in
the same router buffer is reduced. Thus, there is less contention for
bandwidth, inter-job interference is minimized, and the maximum

amount of communication time spent by any one node is decreased
at higher levels of background interference.

Following a similar trend, Figures 3b and 4b show that the maxi-
mum packet latency is also significantly reduced in the multiplanar
variants. The average hop count traversed by packets in the net-
work, shown in Figures 3c and 4c, is not greatly affected but does
tend to be slightly reduced in multiplanar versions.

7.2 Link Failure Study

Experiments for this study use the same DUMPI trace workloads,
AMG1728 and MG1000, as in Section 7.1 but with a fixed level of
background interference: 36.25%. Instead of scaling the interference,
we scaled the number of failed links as a percentage of the number
of links in a single plane. To evaluate how resilient different versions
of these networks are, we applied consistent link failure counts to
each network type.

We included the FDR variants for consideration because pro-
viding an additional plane of routers on top of the first gives a
distinct advantage to the multiplanar network in nearly any type
of comparison except for cost. The increased cost of multiplanar
networks can be mitigated by using lower-specification hardware.



10 20 30 40 50 60 70 80 90
Failed Links (% of Number of Single Plane Links)

0

1

2

3

4

5

M
ax

. C
om

m
un

ic
at

io
n 

Ti
m

e 
(m

s)

Comm. Time - AMG1.7K - 1D Dragonfly
1 Rail (EDR)
2 Rail (EDR)
2 Rail (FDR)

(a) Application Communication Time

10 20 30 40 50 60 70 80 90
Failed Links (% of Number of Single Plane Links)

50

100

150

200

250

300

350

400

M
ax

. L
at

en
cy

 (μ
s)

Max. Latency - AMG1.7K - 1D Dragonfly
1 Rail (EDR)
2 Rail (EDR)
2 Rail (FDR)

(b) Latency

10 20 30 40 50 60 70 80 90
Failed Links (% of Number of Single Plane Links)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Av
er

ag
e 

H
op

s 
Tr

av
er

se
d

Hop Count - AMG1.7K - 1D Dragonfly
1 Rail (EDR)
2 Rail (EDR)
2 Rail (FDR)

(c) Hop Count

Figure 5: Link failure resilience study on the 1D-Dragonfly topology with the AMG1728 trace workload with 1,000 synthetic
background ranks. Each synthetic rank injects packets into the network at 36.25% of 12.5 GiB/s. Note that the total number of
links failed is based on a percentage of the number of links found in a single plane.
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Figure 6: Link failure resilience study on the 1D-Dragonfly topology with the MG1000 trace workload with 1,000 synthetic
background ranks. Each synthetic rank injects packets into the network at 36.25% of 12.5 GiB/s. Note that total number of links
failed is based on a percentage of the number of links found in a single plane.

Figures 5, 6, 7, and 8 show the results of these experiments. In
Figures 5a, 6a, 7a, and 8a we see that as we increase the number of
failed links in the network, performance suffers. Failed links reduce
the number of available paths for packets to take, and thus packets
are far more likely to compete for bandwidth along inter-router
links.

As we reached 50% failed links, however, the single-plane net-
work configurations started to fail since there were no legal paths
between select endpoints in the workload. The dual-plane configu-
rations were able to withstand significantly more numbers of failed
links before starting to show signs of congestion or interference,
let alone failing communication altogether.

AMG is an application that is much more communication inten-
sive than MG is, with a lot more collective operations that prevent
the application frommoving forward and injecting new packets into
the network until the previous packets complete. Because AMG is
collective heavy, its maximum communication time (the maximum
amount of time any one process spends doing communication) is
more sensitive to interference. But because new packets are not
introduced until the previous collectives have completed, the max-
imum latency (maximum time that a single packet spends in the
network) is not as affected. MG, on the other hand, mostly involves

MPI_SEND and MPI_IRECV calls, with some MPI_WAITSOME’s as
well, and so it has fewer operations to prevent it from requesting
to inject packets into an already congested network.

Effects of the failed links in dual-plane variations were felt mostly
by the lower-specification simulated hardware, while the standard
dual-plane versions seem mostly unperturbed by the changes to
the network.

The maximum packet latencies in the experiments are also inter-
esting. Figures 5b, 6b, 7b, and 8b show that the dual-plane versions
have a distinct advantage with regard to latency. The effects of
reduced bandwidth are noticeable but still significantly improved
over the standard specification single-plane version.

The experiments also showed the effects of congestion on hop
counts. In CODES, the hop count is the number of routers traversed
in a path by a packet. We can see in Figures 5c, 6c, 7c, and 8c that the
networks start to experience some level of congestion as we increase
the number of failed links. This is evident by the higher number
of hops traversed by packets. Because of the progressive adaptive
routing scheme employed by 1D Dragonfly and Megafly, packets
can be routed along longer, nonminimal routes when congestion is
detected locally.
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Figure 7: Link failure resilience study on the Megafly topology with the AMG1728 trace workload with 1,000 synthetic
background ranks. Each synthetic rank injects packets into the network at 36.25% of 12.5 GiB/s. Note that total number of links
failed is based on a percentage of the number of links found in a single plane.

10 20 30 40 50 60 70 80 90
Failed Links (% of Number of Single Plane Links)

0

2

4

6

8

M
ax

. C
om

m
un

ic
at

io
n 

Ti
m

e 
(m

s)

Comm. Time - MG1K - Megafly
1 Rail (EDR)
2 Rail (EDR)
2 Rail (FDR)

(a) Application Communication Time

10 20 30 40 50 60 70 80 90
Failed Links (% of Number of Single Plane Links)

100

200

300

400

500

M
ax

. L
at

en
cy

 (μ
s)

Max. Latency - MG1k - Megafly
1 Rail (EDR)
2 Rail (EDR)
2 Rail (FDR)

(b) Latency

10 20 30 40 50 60 70 80 90
Failed Links (% of Number of Single Plane Links)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Av
er

ag
e 

H
op

s 
Tr

av
er

se
d

Hop Count - MG1k - Megafly
1 Rail (EDR)
2 Rail (EDR)
2 Rail (FDR)

(c) Hop Count

Figure 8: Link failure resilience study on theMegafly topology with theMG1000 trace workload with 1,000 synthetic background
ranks. Each synthetic rank injects packets into the network at 36.25% of 12.5 GiB/s. Note that total number of links failed is
based on a percentage of the number of links found in a single plane.

We chose to fail a fixed number of links for comparing across
single- and dual-plane networks in order to keep as many vari-
ables as possible constant in comparisons. Nevertheless, even if
one compares, for example, the 80% dual plane data with the 40%
single-plane data, the dual-plane network still wins out.

8 Related Work
Similar work observing the effects of link failure has been per-
formed on single-planar 1D-Dragonfly networks [6]. Authors of
that work tested a 8,192 node network with 1% link failure rate with
three workloads using the Structural Simulation Toolkit network
simulator [28]. They encountered similar issues in the realm of
efficient routing computations; they precomputed a small subset of
paths from a network with no link failures and filtered out paths
that had failed links. A limitation of their work is that a legal path
may have existed between two nodes in the network but was not
included in the subset: thus, if all paths in the subset were rendered
invalid by link failure, communication would fail. In contrast, our
work dynamically determines legal paths to route along if they
exist.

In recent years, studies have sought topologies that are partic-
ularly resilient to router link failures. Modified versions of the

fat-tree network topology have been tested with varying levels
of link failure and showed improvement over the default fat-tree
network [1, 2].

Routing correctly in an HPC network is crucial to avoiding dead-
lock and performance-limiting situations, and this is even more
important in irregular networks such as those with link failures.
Many studies [1, 2, 15, 16, 29, 34] have been performed on routing
deadlock-free within a network with link failures.

Another way to route correctly within a networkwith failed links
is to completely ignore the type of network it originally was, treat-
ing the new, irregular network as an arbitrary graph. This type of
routing is known as topology-agnostic routing. A survey of routing
algorithms for general networks discusses the challenges of routing
in irregular interconnection networks without deadlock [13]. Often
algorithms of this type are also called oblivious because the routing
decisions of one packet do not affect the routing decisions of an-
other. Work has shown that the problem of finding an appropriate
set of virtual channels to in order to route, deadlock-free, for an
entirely arbitrary graph is NP-complete [12], and heuristics have
been provided to solve the problem.



The CODES simulator has a large body of work associated
with it. Numerous researchers have utilized the CODES simula-
tor for job-interference and performance studies with HPC appli-
cation traces. Recent works following that trend include adding
and evaluating new CODES network models [20, 23, 26, 32], ex-
panding CODES to allow for quality-of-service traffic classes in
Dragonfly models [26], and extending CODES network models
to allow for multirail-multiplanar configurations of fat tree and
Slim Fly [17, 22, 33]. Similar to the methodology of this work, each
of these other CODES-based works analyze the performance of
different interconnect network models with various benchmark
workloads to exhibit the features of their specific contributions.

Other recent works with simulating the HPC application com-
munication include an analysis of different network topologies with
three dimensions of variability, also performed with the CODES
simulator [3]. While the CODES simulator focuses on replaying
traces of HPC applications, other tools, such as PyPassT [27], ana-
lyze parallel application source code and transform it into work-
loads for their Performance Prediction Toolkit to generate realistic
performance estimations.

9 Future Work
We would like to perform a more thorough evaluation of multipla-
nar variants of other topologies including fat tree and Slim Fly.

We would also like to expand on the current link failure study.
Fixing the number of link failures and observing how different
configurations of networks behave would be helpful for figuring
out how best to provision a network.

Another line of work would be to broaden the runs to scale the
percentage of failed links with the number of planes so that when
comparing a dual-plane network with a single-plane network with
link failures, the dual-plane network would have twice the total
number of failed links. In our current results it is possible to make
this comparison by comparing data points in in Figures 5, 6, 7, and
8. With that comparison, although arguably within a limited range,
our findings show that application performance is less affected by
link failure in multirail-multiplanar networks.

We intend to build on our current work to conduct an in-depth
study of how congestion can arise in a network and to develop
methods for mitigation of this congestion. Link failures are a cause
of congestion in networks; and, unless these failures are dealt with,
more congestion will ensue.

10 Conclusion
In this work we presented the challenges of routing packets in
Dragonfly-class interconnection networks with link failures. Specif-
ically, when link failures are present, additional care must be taken
when routing packets in order to avoid problems such as head-of-
line blocking or deadlock. To utilize the network models in the
CODES simulator with no modification of virtual channel assign-
ment, we needed in order to dynamically find paths that did not
violate the assignment constraints. We developed an organizational
structure in CODES that uses Algorithm 1 to accomplish that task.
Specifically, the algorithm enumerates valid paths used by the pro-
gressive adaptive routing algorithms implemented in the CODES
Dragonfly-class networkmodels so that these algorithms are failure-
aware.

We also extended the 1D-Dragonfly and Megafly CODES net-
work models to support multirail-multiplanar configurations. We
studied how single- and dual-planar Dragonfly-class networks han-
dle increased levels of link failure using the dynamic failure-aware
adaptive routing.

We showed how simulation can be used to generate predictions
of the behavior of irregular networks, such as those with failed
links. We found that with a fixed number of failed links, dual-planar
networks maintain a distinct advantage against communication
failure and tolerance of link-failure-caused congestion over single-
planar configurations, even with reduced bandwidth.
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