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Abstract—High-performance computer (HPC) networks are
often shared by traffic from multiple applications with varying
communication characteristics and resource requirements. These
applications contend for shared buffers and channels, resulting
in significant performance variations and slowdown of critical
communication operations such as low-latency MPI collectives.
In order to ensure predictable communication performance,
network resources must be allocated based on the differing
communication requirements of applications.

Quality of Service (QoS) solutions using traffic classes can
restrict the allocation of resources to improve performance
predictability by defining traffic classes with specified resource
allocations and assigning applications to these classes. However,
it is impractical to define and enforce a different class allocation
for each of the myriad of unique traffic patterns seen on HPC
systems. This poses the challenge of maintaining a limited number
of allocations to meet a wide range of application performance
targets.

We propose a practical QoS implementation for large-scale,
low-diameter networks, such as the dragonfly topology, using
bandwidth shaping along with traffic prioritization to reduce
the impact of interference on communication performance. Our
design is applicable to an arbitrary number of traffic classes
and can be tuned based on site-specific needs. We describe
how a solution can be configured with 4 classes and deployed
in production to match the varying application performance
requirements of mixed workloads, providing performance pre-
dictability in a shared environment. The results show that
our solution virtually eliminates the slowdown of high-priority
traffic due to interference with lower-priority traffic, which also
contributes to a significant reduction in run-to-run variability. We
also demonstrate how port counters can be used to detect when
a job-to-class assignment is inappropriate for a given system and
when a workload is exceeding the rate limits of its class.

I. INTRODUCTION

The interconnection network of large supercomputers use
high speed switches to route data across the network. Most
HPC networks are shared by multiple applications with vary-
ing communication performance characteristics and band-
width/latency requirements. The applications compete for link
bandwidth and oversubscribe the link when the available
bandwidth is less than the total bandwidth required by the
competing application traffic flows.

Heavy traffic flows can unfairly monopolize the link band-
width, particularly when each application is given equally
unrestricted access to the network channels [1]. Without access
restrictions, network contention becomes an issue that can
result in reduced or delayed network access for different
applications. This may unfairly harm the performance of
certain types of application traffic. For example, this situation

can lead to significant performance degradation in latency-
sensitive communication traffic, such as small message MPI
collectives, while potentially posing negligible impact on more
latency-tolerant patterns such as checkpointing [2].

HPC networks use a variety of techniques to strike a
balance between cost-efficient system use and application
performance. Adaptive routing can be employed to improve
application communication performance by re-routing packets
around high-traffic areas of the network [3]. Adaptive routing
can also be used to spread traffic more evenly across the
network, ensuring more balanced use of network resources.
Congestion management, aimed at diagnosing and treating
network congestion when it occurs, works by temporarily
reducing the rate at which packets are injected into the network
and, over time, the total number of packets in-transit [4].

What routing and congestion management techniques don’t
provide is traffic separation and application isolation: alloca-
tion of network resources to specific applications or classes
of traffic. Quality-of-service (QoS), on the other hand, can
differentiate how resources are allocated to the traffic of
different applications, enhancing application isolation and thus
managing interference and resource contention [5]. With better
management of resources and interference, application perfor-
mance can be maintained despite significant network load.

System-level partitioning, giving applications their own
exclusive sectors of the network system, is either resource-
intensive and expensive, or it is impractical for networks
that aim to balance traffic across all links with adaptive
routing, such as the 1D dragonfly [3]. Additionally, physi-
cally partitioning the network can cause fragmentation which
reduces overall system utilization. Resource-level partitioning
using traffic classes to provide quality of service is a more
efficient way of managing network resource without system
fragmentation. Such a QoS solution differentiates between
different types of traffic by placing them in different network-
defined traffic classes.

Each traffic class is allocated separate network buffers and
a guaranteed fraction of the channel bandwidth, based on the
performance requirement of traffic assigned to the class [6].
Importantly, unused bandwidth of one class may be consumed
by traffic of another class since this would not result in
contention, providing flexible resource partitioning.

However, the effectiveness of traffic classes depends on
how accurately the traffic assigned to the class matches the
definition of each class. The OpenFabrics Interfaces Working
Group [7] and several vendors [8] have defined traffic classes



that are expected to be used by HPC sites. Nevertheless, there
is no universally ideal configuration for these classes due to the
variations in workloads, interference patterns, and site-specific
priorities across different HPC centers.

Studies up until now have focused on mainly priority-
driven QoS or QoS based mainly on simple, course-grained
bandwidth allocations [9]–[11]. Furthermore, there is limited
knowledge available on how to precisely evaluate the suitabil-
ity of a set QoS configurations for workloads with multiple
distinct classes of traffic. HPC centers are running complex
workloads that need more fine-grain resource allocations,
hence, we also need better processes of fine-tuning QoS
classes to match the requirements of the workload and site.

Our work aims to address these issues with the contributions
as follows:

• We describe a practical method of implementing QoS
classes on large-scale, low diameter networks to enable
traffic differentiation, prioritization, and shaping using
two rate limits per class.

• We propose a scheme for configuring and deploying QoS
classes in production to match the varying application
performance requirements of mixed workloads on pro-
duction HPC systems.

• We evaluate the ability of our scheme to satisfy the
relative performance goals of multiple workloads sharing
a large-scale system.

Our solution reduces the impact of interference on critical
communication operations, enabling latency-sensitive traffic to
consistently achieve near baseline performance while ensuring
bandwidth-intensive traffic is allocated the resources needed to
achieve high bandwidth.

II. BACKGROUND AND MOTIVATION

A. Communication Characteristics and Performance Targets

Application communication operations can be characterized
as being either latency-bound or bandwidth-bound. Latency-
bound transfers have low injection rates and the resulting
communication time depends on individual packet latencies.
These transfers are most sensitive to how fast individual
packets progress through the network and are less sensitive to
how many packets can be transferred in a given period. Small
message MPI collectives such as MPI Allreduce are examples
of latency-bound operations that depend on low-latency packet
transfers to meet performance targets. On the other hand,
bandwidth-bound operations move relatively large amounts of
data through the network and the overall communication time
depends on the throughput instead of the latency of individual
packets. That is, the communication time is most sensitive to
how long it takes to receive all the data and less sensitive to
the time it takes each packet to traverse the network. Bulk data
I/O transfers are examples of bandwidth-bound operations.

To meet their respective performance targets, latency-bound
traffic and bandwidth-bound traffic need access to the network
resource in different manners. Keeping packet latencies low in
latency-bounded flows require reducing the time spent queuing

on the network by providing faster access to network channels.
Bandwidth-bounded flows, however, require high injection
rates or longer access to the shared channels in order to move
a large amount of data through the network.

HPC facilities may further classify some traffic as having
higher priority than others based on site-specific goals. For ex-
ample, facility administrators may deem that certain mission-
critical and latency-sensitive collective operations such as
MPI Allreduce should not be impeded and instead receive
first priority access to network resources, regardless of source
application. In contrast, they may decide that other types of
traffic, such as network monitoring data, could be significantly
delayed without adverse effects to the facility. The prioritiza-
tion of different types of traffic may be based on, among other
things, (i) loss in system throughput if a certain type of traffic
is delayed (ii) or the impact on user experience when a certain
type of traffic is slowed down.

B. Contention for Shared Network Channels

Contention for shared resources such as channel bandwidth
causes interference to communication performance. Networks
without QoS, however, treat all traffic indiscriminately, regard-
less of the traffic’s purpose or source application. There are
no restrictions or guarantees over the use of shared channels
and buffers, and network resources are allocated to whichever
application requests it first. As a result, competing traffic flows
will be contending for network access. This contention will
limit the amount of resources available to an application during
periods of heavy loads when channels are oversubscribed.
Interference also affects the order in which traffic flows get
access to the channel, even when channels are not oversub-
scribed. With communication operations having unrestricted
access to resources but differing requirements, some opera-
tions cannot acquire resources in the manner they need to
consistently meet their performance targets. Conversely, some
applications get access to more resources than they need to
satisfy some user-defined performance goals. For example, the
packets of small message MPI collectives are more sensitive to
increased packet latencies than large I/O requests and therefore
should be progressed faster through the network.

Interference over the network significantly degrade the per-
formance of many HPC applications that are characterized by
latency-sensitive collective communication patterns [12], [13].
The main cause of significant slowdown due to interference
is increased queuing delays resulting from head-of-line (HoL)
blocking, i.e when fast-draining messages get stuck behind
slow-draining messages in shared buffers [10].

C. Adaptive Routing and Congestion Management

Interconnect congestion can be classified into two cate-
gories: intermediate and endpoint congestion [14]. Interme-
diate congestion occurs when multiple input ports on a router
try to use the same output port, causing packets to get backed
up in the buffers of the router. Endpoint congestion occurs
due to application incasts – traffic from multiple source end-
points target the same destination endpoint, overwhelming the
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endpoint’s ability to accept all the incoming traffic. Adaptive
routing can effectively address intermediate congestion by
routing incoming packets to different output ports to avoid
oversubscribing any single output port. However adaptive
routing is ineffective against endpoint congestion because
there are no alternative paths to the endpoint at the destination
switch. With endpoint congestion, as traffic backs up from the
target endpoint, adaptive routing will spread incoming traffic
to less busy paths and potentially cause traffic to get backed
up on those paths across the network as well. Congestion
management schemes that appropriately abate the incast flows
are essential for handling endpoint congestion. These solutions
strive to curtail the injection volume at the congestion-causing
sources based on how many packets can be consumed at the
endpoints [4].

D. QoS Considerations

QoS mechanisms are not designed to address endpoint or
intermediate congestion. QoS is used to decide which packet
to send based on priority and bandwidth specifications. This
is orthogonal to both adaptive routing, which determines the
path a packet should take, and congestion management, which
determines if a packet should be injected into the network
based on the state of congestion in the network.

Traffic flows can be regulated using QoS to ensure that
flows acquire the resources they require to meet their per-
formance targets [9]–[11]. As the available bandwidth and
packet latencies affect an application’s ability to meet its
relative performance targets, QoS mechanisms should allow
for regulating resources that affect the resulting packet latency
and bandwidth allocated to traffic flows.

Packet latencies are mostly affected by high queuing delays
and head-of-line (HoL) blocking on routers. To prevent high-
packet latencies in latency-sensitive flows, queuing delays can
be reduced by giving the flow a higher arbitration priority for
the output port than other flows. This will allow the packet
to be injected ahead of lower priority packets. Additionally,
to prevent HoL blocking, different flows should use different
virtual channel buffers. Placing latency-sensitive communica-
tion in a separate class that uses separate buffering and a
high priority has been shown to reduce the latency, similar
to the expedited forwarding per-hop behavior (PHB) of TCP
differentiated services [5].

Bandwidth guarantees (or assured injection rates) can be
defined on each class to ensure a minimum amount of band-
width is available to traffic using that class when channels are
oversubscribed. In addition, peak bandwidth (or peak injection
rate) limits can be set for each class to limit the amount
of bandwidth a particular class can use at its given priority
level. Both limits, if set properly, allow different classes to
receive enough bandwidth to make forward progress and not
be starved by higher priority classes, as shown in Section IV.
This prevents any class from unintentionally dominating the
bandwidth at the expense of all other classes.

Ideally, we would like to isolate the application traffic from
from each other to ensure that each flow is allocated the

resources it needs to meet its performance targets. This is
impractical because assigning resources to each application
based on the application’s specific requirements requires a vast
amount of hardware resources. Therefore, a more realistic so-
lution is to group applications with similar characteristics and
performance targets in the same class and allocate resources
on a per-class basis. This is the prevailing solution for most
practical QoS solutions [6], [9], [11].

III. DESIGN OF A TUNABLE QOS SOLUTION

A. Traffic Prioritization and Shaping

We propose a QoS mechanism that supports the diverse set
of workloads expected on modern HPC systems. This solution
allows for configuring an arbitrary number of traffic classes
with independent virtual channel buffers and unique relative
priorities to enable traffic prioritization. To achieve bandwidth
shaping, each class is configurable with two rate limits: an
assured rate (AR) limit and a peak rate (PR) limit, where
AR ≤ PR. This solution is based on the Two Rate Three
Color Marking design [15]. The packets that are ready to be
sent from each class are marked as either green, yellow, or
red, depending on the current injection rate of its respective
class. A packet is marked as red if the class exceeds its PR,
or it is marked as yellow if only the AR has been exceeded.
And, a packet is marked as green if its class does not exceed
its AR. Marking is done each injection cycle for the purpose
of output port arbitration, and stalled packets are re-marked
in subsequent cycles. The packet content is unchanged and
marking information is not communicated downstream.

Arbitration is priority-based within the constraints of the
rate limits. That is, green packets are sent first from higher
priority classes. If there are no green packets that can be sent,
then yellow packets are sent in a similar priority order. If
neither green nor yellow packets can be sent, a red packet
will be chosen from a class by round-robin – priorities are
ignored and each class has an equal chance of getting access
to the output port. Note that flow control can stop any class
from sending if downstream buffers are unavailable, in which
case a packet form another class is sent.

A separate token bucket is used to meter each of the two
rate limits per class. Tokens accumulate in a bucket at the
rate of the limit it meters, i.e., the assured rate bucket will
accumulate tokens at the assured rate limit defined on the class,
etc. Whenever a green or yellow packet is sent from a class,
a token removed from each of the two buckets with available
tokens. No token can be removed when a red packets is sent
because the peak rate limit has been exceed, at which point
both buckets are empty.

Fig. 1 illustrates our solution being used for two QoS classes
with traffic from three applications.

B. Assigning Traffic To Classes

We propose grouping applications based on the similarity of
their priorities and performance characteristics. Classes have
strict priorities relative to each other, so we first consider
the traffic flow’s priority relative to that of other flows.
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Fig. 1. Illustration of our QoS solution design. Packets are assigned to classes at compute node endpoints, placed in the appropriate class buffers on switches,
and then are colored and compete for access to output channels based on the QoS policy. Both App 1 and 2 assign their traffic to class 1.

When all other factors are equal, the priority will determine
which flow progresses first and achieve lower latency. Placing
flows with similar communication requirements, rather than
adversarial patterns, in the same class can still yield improved
performance. We propose this grouping based on the following
traffic patterns:

• Latency-sensitive traffic: traffic that is primarily latency-
bound, does not require high bandwidth, and is needed for
important, small-to-medium sized collective operations.

• Bandwidth-sensitive traffic: traffic that moves a lot of data
at once and requires high bandwidth. Individual packet
latency is not important since higher packet latencies are
amortized by the cumulative transmission delay of all the
packets in the data being transferred.

• Optional traffic: traffic than can be ignored without signif-
icant impact to overall productivity and user experience,
such as periodically scraping network counters.

• Other: Traffic with mixed bandwidth and latency sensi-
tivity.

We argue that these groups form a good starting point
for categorizing most HPC traffic and are similar to industry
standard traffic classification [7]. However, other grouping
strategies may be used to match the needs of the user with
the requirement that traffic sharing the same group are not
adversarial to each other in terms of latency and bandwidth
sensitivity. We can then use the following QoS class definitions
to regulate the collective flow of traffic per group:

1) Low latency: Guarantees low-latency for traffic in the
latency-sensitive group. This class should have the highest
arbitration priority to reduce queuing delays and lower rate
limits to prevent starvation of lower-priority classes. Lower
rate limits also help to guarantee low packet latencies by
limiting the competition for resources within the class.

2) Best effort: Makes best effort progress of traffic with
mixed latency-sensitivity and bandwidth requirements. This
class should be used by most application traffic except for
low-latency traffic, bulk data I/O, and traffic assigned to
other classes. This class should be allocated with sufficiently
high bandwidth guarantees based on the high volume of data
transferred by its expected workload.

3) Bulk data: Used by traffic with high bandwidth require-
ments and negligible latency sensitivity. This class should be
allocated bandwidth commensurate with the I/O throughput
of the system and the importance of I/O performance to the
system workloads.

4) Scavenger: Guarantees only a small fraction of the
system bandwidth to ensure progress of non-essential traffic,
such as performance data etc., in the background when the
channel is free. This class should have the lowest priority and
low rate limits to prevent it from impacting the performance
of higher priority jobs in the other classes.

Our QoS implementation supports these and other class
definitions by tuning the assured and peak rate limits on
each class for flexible bandwidth shaping and adjusting the
relative arbitration priority to either guarantee low-latency
or restrict interference. The following sections demonstrate
how our implementation uses shaping and prioritization of
traffic to deliver consistent application performance and meet
performance targets.

IV. EVALUATION OF QOS SOLUTION

A. CODES Simulation Toolkit

To collect the data evaluated in this work, we use the
CODES HPC interconnection network simulator [16]. CODES
is a Parallel Discrete Event Simulation (PDES) toolkit built on
top of the Rensselaer Optimistic Simulation System (ROSS)
[17] PDES engine. CODES allows for fine-grained, link-
level simulations of packets moving across high-performance
networks. Additionally, these simulations allow for testing and
evaluation of different technologies such as adaptive routing
algorithms, congestion management, and, as demonstrated in
this work, QoS techniques. We implemented our solution
design in CODES as outlined in the previous section.

B. Network Setup

We simulate a 8320-node system connected using a 1D
dragonfly network. The network consists of 1040 routers with
16 routers per group. Each router has 8 terminal channels, 15
local channels, and 4 global channels. The ratio of terminal
channels to global channels results in a 2:1 taper of the
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network bandwidth, similar to the Theta, Edison, Malbec,
and Shandy systems [18], which increases the potential for
contention among competing traffic flows. We use 25 GB/s
injection bandwidth for all channels, 10 ns delay for terminal
and local channels, and 100 ns delay for global channels. The
simulated router delay is 300 ns and the network packet size
is set to 160 bytes. We use a progressive-adaptive routing al-
gorithm for the network and random node allocation to assign
nodes to jobs. Studies show that this node allocation strategy
improves application throughput for dragonfly systems [19].

We simulate 4 active QoS classes with 4 different priorities.
1) Class 0: has the highest priority and is earmarked as

the low-latency class. Latency sensitive traffic, such as small
message MPI collectives, that will use this class should have
low injection loads, so we set relatively low rate limits on this
class.

2) Class 1: has the second highest priority and is earmarked
as the best effort class. Most application traffic will use this
class. It is given the highest bandwidth allocation of all classes.

3) Class 2: is earmarked as the bulk data class to carry
bulk I/O data across the system. The aggregate I/O load on the
system will be limited, in part, by the number of I/O nodes
in the system. Therefore, we allocate bandwidth to this class
relative to the fraction of system occupied by I/O nodes. This
would ensure progression of I/O traffic.

4) Class 3: has the lowest priority and is earmarked as the
scavenger class. We use this class to demonstrate how very
low-priority traffic can be facilitated on the network without
impacting the performance of other traffic by giving this class
a low fraction of the system bandwidth. Setting the assured
limit to a value greater than zero ensures forward progress for
traffic in this class. However, if forward progress guarantees
are not required, the assured bandwidth limit can be set to
zero and the traffic will potentially be starved indefinitely by
higher-priority flows.

The values chosen for the per-class bandwidth allocations
are for demonstrating the capabilities of this QoS solution.
Each site would configure the classes to match the composition
of their site-specific workloads and administration policies,
such as high-priority applications/users.

C. Workload Setup

To generate interference on the network, we use multiple
jobs generating uniform random traffic with every message
being sent to a random destination rank within the same job.
We use 640 B messages and vary the injection load of each job
by varying the delay between injecting successive messages.
These small messages allow us to avoid local incasts and
evenly spread load across the system. Other synthetic patterns
such as random-permutation cause congestion hotspots for
which QoS is not the appropriate solution. Such patterns
require a congestion management solution, which is outside
the scope of this work.

We use a Scalable Workload Model (SWM) [20] of
MPI Allreduce, a common operation on HPC systems [21],
to simulate latency sensitive traffic. SWMs are skeletons of

TABLE I
QOS CLASS CONFIGURATION FOR SINGLE-PORT STUDY

Class Priority Assured rate limit (%) Peak rate limit (%)
0 P0 (highest) 20 100
1 P1 45 100
2 P2 35 100
3 P3 (Lowest) 0 0

Fig. 2. QoS bandwidth partition over a single port. Each class is carrying a
stream of 1000 packets.

applications and benchmarks that capture the communication
patterns of the workload that they model. Each allreduce
SWM benchmark performs multiple calls to MPI Allreduce,
reducing 8 bytes of data across all ranks of the job.

D. Single-port Traffic Shaping

To demonstrate the bandwidth shaping capabilities, we
simulate four identical traffic flows sharing the bandwidth
of a single channel. The port is configured with four traffic
classes, with each class being used by a single flow. The class
definitions are provided in Table I. Each flow streams 1000
packets over a shared router-to-router channel. The stacked
area plot in Fig. 2 shows the results as each class attempts
to use 100% of the channel bandwidth until they complete
sending their respective payloads.

The results in Fig. 2 illustrates how our implementation
shapes traffic bandwidth through a single port. At the start of
the simulation, classes 0, 1, and 2 are able to share the port’s
bandwidth at their respective assured rates. Class 3 is starved
and unable to send because it is not assured a fraction of the
bandwidth and the port is fully utilized by traffic from the other
classes. After traffic from classes 1 and 2 complete, class 0
increases its utilization up until its peak rate. With Classes 0,
1, and 2 having a peak rate of 100%, Class 3 can use the port
only after the other classes have completed sending.

E. System-wide Traffic Shaping

After evaluating bandwidth shaping on a single port, we as-
sess the impact of system-wide bandwidth shaping using QoS
and four identical synthetic traffic jobs generating uniform
random traffic. Each rank of each job injects 10,000 640 B
messages at the peak channel injection rate, with each message
being sent to a randomly chosen remote rank of the same job.
With our 2:1 tapered network, the total offered load is twice
the global bandwidth. Each job is assigned to a different class
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as shown in Table II. The classes’ peak rates are set to equal
their respective assured rates to show strict traffic shaping.

TABLE II
QOS CLASS CONFIGURATION FOR SYSTEM-WIDE STUDY

Job Class Priority Assured rate limit
(%)

Peak rate limit (%)

0 0 P0 (highest) 10 10
1 1 P1 60 60
2 2 P2 20 20
4 3 P3 (lowest) 10 10

Fig. 3. Change in class throughput over time based on interference and QoS
bandwidth allocation. Each class is carrying the same total volume of traffic.

Fig. 4. System-wide QoS stalls per class during each snapshot window of
the bandwidth shaping study.

Throughput results for this study are shown in Fig. 3.
Class 1 is able to achieve the highest throughput since it
had the largest bandwidth allocation. Class 0 and 3 achieve
similar throughput because their traffic loads and bandwidth
allocations are equal. The slight variation in their performance
is attributed to their different random node assignments and
different priorities.

A class is blocked from injecting its next packet if any one
of three conditions are met. We describe these cases as the
following types of QoS stalls:
Green stall: The class has a green packet and a higher priority
class also has a green packet ready to inject.
Yellow stall: The class has a yellow packet and either a higher-
priority class has a yellow packet ready to send or any other
class has a green packet ready to send.
Red stall: The class has a red packet and either any other class
has a green/yellow packet ready to send or it loses to another
class in round-robin arbitration.

Fig. 4 shows the total number of QoS stalls per class and
Fig. 5 provides a breakdown of the types of stalls. Green
packets are stalled only when a higher priority class has
green packets. For this reason, when two classes have equal
bandwidth allocations, as the case with classes 0 and 3, the
class with lower priority will experience more frequent green
stalls. Class 0 and 3 have equal shares of the bandwidth but
class 3 gets stalled because of lack of priority while class 0
does not since it has the highest priority of all classes.

Yellow stalls occur only when a class exceeds its assured
rate and is still within its peak rate. There were no yellow
stalls in this scenario because the assured rates and peak rates
were equal for each class.

Red stalls occur when the traffic has exceeded the peak rate
limit of its class. Class 0 experiences many red stalls because
job 0 occupies 25% of the system and has an aggregate
injection rate of 50% of the global bandwidth on this tapered
system. This exceeds the 10% peak rate limit of class 0.

As discussed in Section III, the class with the highest
priority should be configured as the low-latency class that will
have priority arbitration. However, Fig 6 reports that packets
in class 0 experience high tail latencies due to the high number
of QoS red stalls experienced by class 0. This highlights the
issue of having high-bandwidth flows in a low-latency class.

F. Low-latency Assurance and Repeatability

To demonstrate the ability of the QoS implementation to
guarantee low-latency and reduced performance variability for
high-priority latency-sensitive traffic, we evaluate a system
running multiple All reduce jobs along with multiple UR
jobs generating background traffic at different rates. Table III
shows the workload configuration on our simulated 8320-node
tapered 1-D dragonfly system and the assigned class rate limits
are shown in Table IV.

Each allreduce job calls 10 MPI Allreduce operations to
reduce 8 bytes of data. We run four instances of allreduce on
32 nodes and two instances of allreduce on 256 nodes. The rest
of the system is occupied with three UR traffic patterns. The
allreduce jobs are smaller than the UR jobs because small jobs
are potentially more sensitive to interference from large jobs.
The multiple MPI Allreduce calls in each job and the multiple
instances of jobs at different scales show how effectively QoS
can facilitate performance repeatability. The injection rates are
80%, 60%, and 20% for UR-1, UR-2, and UR-3, respectively.
The rates were chosen to (i) align with the peak rate limit of
the class assigned to the job and (ii) approximate the expected
load that would be seen by that class. The UR jobs inject traffic
at a steady rate until every allreduce job completes, then the
UR jobs stop injecting data. After this point, in-transit UR
packets drain from the network.

We compare three configurations to evaluate the effects
of QoS: (i) Standalone, (ii) interference with QoS (QoS),
and (iii) interference without QoS (no-QoS). We measure
the performance of Standalone allreduce jobs by running the
jobs on an idle system without background traffic. For the
interference without QoS, we run the allreduce jobs at the
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Fig. 5. Breakdown of System-wide QoS stalls per class during each snapshot window of the bandwidth shaping study.

Fig. 6. Distribution maximum packet latencies seen by nodes using each
class.

TABLE III
WORKLOAD CONFIGURATION FOR LOW-LATENCY STUDY

Job id # Nodes App Class
0 32 allreduce32 0
1 32 allreduce32 0
2 32 allreduce32 0
3 32 allreduce32 0
4 256 allreduce256 0
5 256 allreduce256 0
6 4160 UR-1 1
7 1760 UR-2 2
8 1760 UR-3 3

same time as the UR jobs without using QoS, i.e., traffic from
all jobs share a single class. For interference runs with QoS,
each job uses their assigned class. The same node allocations
are used for all three configurations. All jobs begin once the
simulation starts. We do not explicitly specify a warm-up
period because of the volume of traffic being generated; the
iterations of MPI Allreduce calls within each allreduce job
and the duration of the runs sufficiently amortizes the time it
takes for the network to warm up. We will show the network

TABLE IV
QOS CLASS CONFIGURATION FOR LOW-LATENCY STUDY

Class Assured rate (%) Peak rate (%)
0 5 10
1 30 80
2 20 60
3 5 20

Fig. 7. Distribution of All Reduce operation latency across job ranks.

Fig. 8. Distribution maximum packet latencies seen by nodes using each
class.

performance over several time steps (or snapshot periods) to
confirm this.

Fig. 7 shows the distribution of MPI Allreduce latency
across all ranks of a job for different system configurations.
The first boxplot for each job is the performance with the
Standalone configuration while the middle boxplot shows
performance when background traffic is causing interference
and each job is using their assigned class, i.e., QoS. The
third boxplot for each jobs shows the MPI Allreduce latency
when it is not isolated from the background traffic, i.e. no-
QoS. We achieve near Standalone performance with the QoS
configuration, where allreduce jobs use the low-latency class
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Fig. 9. Change in class throughput over time based on interference and
QoS bandwidth allocation. The injection rate into each class is different and
injection ends for all classes when the job in class 0 terminates.

and background traffic is assigned to different classes. The
QoS config. eliminates the increase in maximum latency due
to interference that is seen in the no-QoS config. Similarly,
the maximum packet lantencies seen by all nodes in class 0
with the QoS config. are significantly lower than those of other
classes, as illustrated in Fig. 8.

Fig. 9 shows the per-class throughput results for the QoS
config. The load in class 0 is over 2 orders of magnitudes
less than that of the all other classes and is within the 5%
assured rate limit of class 0. Fig. 10 shows the breakdown of
system-wide QoS stalls for this low-latency experiment. Class
0 experienced negligible stalls because of its low load and high
priority. Additionally, there were negligible red stalls in this
experiment because each class’s peak rate limit was equal to or
greater than the load of the traffic assigned to that class. Unlike
in the traffic shaping experiments in the previous subsections,
this peak rate limit is higher than the assured rate limit on each
class, causing many yellow stalls. Setting different assured and
peak rate limits offers more flexibility in bandwidth shaping
since consumption of non-assured bandwidth can be driven by
priority instead of by a round-robin process.

We increase the injection rate of UR-2 and UR-3 to
80%, thereby increasing the intensity of interference from
background traffic. For this configuration, the injection rates
of traffic in classes 2 and 3 exceed the peak rate limit of
the class and show the results in Fig. 11. These results
confirm that we are still able to achieve near Standalone
performance consistently for each allreduce job and for the
multiple MPI Allreduce calls within each job, indicated by
the short whiskers and positions of the outliers. The load
increase in the two lowest priority classes, 2 and 3, had a
negligible impact on the performance of traffic in classes 0 and
1. In addition to the allreduce jobs having consistently near-
ideal performance, the traffic in class 1 was able to maintain
high throughput due to the bandwidth allocation guaranteed
by QoS, as illustrated in Fig. 12.

V. DISCUSSION

A. Traffic Load and QoS Rate Limits

QoS enforces defined resource allocations to different
classes in an effort to manage the competition for resources
and reduce slowdown due to interference. The allocation of

resources should be defined in a manner to ensure each flow
can progress at an acceptable pace without any unintended
impact to other flows. We demonstrated that setting an assured
rate limit for a class will ensure the class is not starved,
regardless of the intensity of interference from other classes.

The proper configuration of the assured and peak rate limits
for a class depends on the performance targets of its expected
workloads, as outlined in Section II-D. We demonstrate that
equating the peak rate of the class to the peak expected traffic
load is a good starting point to finding a suitable value. For the
assured rate limits, we recommend starting with the minimum
required rate needed to attain acceptable throughput and/or
latency for traffic assigned to the class when the channels are
oversubscribed. These limits can then be tuned using the QoS
stall metrics as guides. The number of yellow and red stalls are
indicators of constraints due to rate limits since these packets
get stalled only when the assured/peak rate has been exceeded.
Additionally, the number of green stalls is an indicator of
constraints due to insufficient priority since packets are marked
green when the class has not exceed its assured rate. The
number of acceptable stalls will depend on the workload and
the desired traffic shaping outcome.

For QoS to work as expected, it is important that workloads
are assigned to their appropriate classes. For example, a
properly tuned low-latency class will not be able to guarantee
low packet latencies if a bandwidth-intensive flow that exceeds
the peak rate is assigned to that class. This is shown in
Fig. 6, where class 0 packet latencies are very high due to
the high load in that class. The QoS stall counters can be
used here to flag an inappropriate traffic-to-class assignment.
An unexpectedly high number of red stalls in a class could
indicate the traffic has exceeded the class’ expected load.

B. Production Deployment

Evidence indicates that users are unlikely to utilize advanced
system capabilities effectively if it requires detailed knowledge
of the service [22]. QoS solutions are not exceptions. Wide
users adoption of QoS require user-friendly QoS interfaces.
A simple way of exposing QoS mechanisms to the users is
to automatically assign different workloads to specific classes,
such as by having the MPI library automatically assign certain
operations to specific classes or having the I/O subsystem
assign all I/O traffic to the bulk data class. This would be
transparent to the user while providing the full benefits of
QoS. Another benefit of this solution is that administrators
can define system-wide configurations to restrict what type of
traffic can be assigned to which class, preventing inappropriate
traffic-to-class assignment.

VI. RELATED WORK

Several QoS solutions have been proposed for low-diameter
networks such as dragonfly and fat-tree networks. Most of
these vary the arbitration priority in some manner to reduce
packet latencies, or regulate the bandwidth allocation to differ-
ent flows, or both [9], [10], [11]. These studies discuss service
levels instead of QoS classes depending on the architecture
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Fig. 10. Breakdown of System-wide QoS stalls per class during each snapshot window of the low latency study. The injection of traffic in classes 1, 2, and
3 are equal to the class’s peak rate limit shown in Table IV.

Fig. 11. Distribution of MPI AllReduce operation latency across ranks of
each job. Background traffic is being injected at 80% of the peak rate.

Fig. 12. Change in class throughput over time based on interference and
QoS bandwidth allocation. The injection rate into classes 1, 2, and 3 is 80%
of maximum link rate and all traffic injections end when the job in class 0
terminates.

used in their respective study. For consistency, our reference
to QoS classes include service levels since the concepts are
the same.

Wilke and Kenny [10] propose using four different traffic
classes to cater for a wide range of HPC workloads. Their
solution uses two low-latency classes for small, latency-
sensitive communication and two high-throughput classes for
bandwidth-intensive traffic. One of the main contributions
of their work is to reduce the number of virtual channel

buffers required to support four classes by using minimal
routing for the low-latency classes. The classes with mini-
mal routing do not need the additional buffers required for
deadlock-free adaptive routing. This limits the flexibility of
their solution since two classes can only support low-latency
traffic because of the classes’ minimal routing constraint. Our
solution supports an arbitrary number of classes, with each
class being fully configurable to support any type of traffic.
While [10] studies an interesting concept to reduce the buffer
requirements of QoS, we have not seen any indications that
the reduction in buffer size requirements warrant the loss
in flexibility. Another notable distinction is that their work
splits the bandwidth equally across all four classes, while our
implementation supports classes with bandwidth limits that
can be tuned to better match the expected workloads.

Multiple studies [6], [9], [11] proposed grouping application
traffic flows into separate QoS classes. Savoie et al. [11]
used only priority as constraints for the QoS classes. These
solutions are insufficient for having fine-grained control over
bandwidth allocations as high priority classes can consume
most of the bandwidth and unfairly starve lower-priority
classes for long periods.

Savoie et al. [23] proved that assigning entire application
to classes was not very effective at improving communication
performance. Along with Savoie et al., other studies [9], [11]
demonstrate that selectively giving priority to MPI collectives
can better improved overall application performance. They
show that grouping traffic flows with similar bandwidth in-
tensities can reduce the interference caused by high-utilization
(or bandwidth-intensive) traffic on low-utilization traffic. Our
solution supports this type of assignment where different traffic
flows within an application can be placed in different classes.
We go further to propose using groups that match not only
the application utilization, but also the performance targets of
the traffic. This allows system administrators to differentiate
between types of traffic that have similar utilization but
different importance to the site.

Jakanaovic et al. [6] recommends allocating most of the
bandwidth to the class with low bandwidth requirement.
This has the potential to degrade overall system performance
and invalidates the benefits of QoS if a bandwidth intensive
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workload is assigned to this class, as they also noted in their
work. The flexibility of our dual rate solution with class prior-
itization allows latency-sensitive traffic to be guaranteed good
performance without requiring assured bandwidth allocations
and allows the bandwidth to be allocated appropriately to other
classes.

VII. CONCLUSIONS

HPC networks often run multiple applications with differing
communication patterns. These patterns compete for network
resources, and this competition causes increased latency and
reduced bandwidth for important communication operations.
Because different applications may be running at any given
time, network contention varies and can result in large run-to-
run performance variations for certain applications.

Our QoS proposal attempts to address these issues by
classifying application traffic into one of several traffic classes
based on performance requirements. Each of our class has a
unique arbitration priority, an assured bandwidth limit, and a
peak bandwidth limit to efficiently regulate access to network
channels. We demonstrated how our solution can be used to
define four traffic classes – Low latency, Best effort, Bulk data,
and Scavenger – to support the diverse traffic on HPC systems
and improve application performance.

Our proposal ensures consistent, low-latency performance
for latency-sensitive traffic, achieving near-baseline perfor-
mance for MPI Allreduce operations with different jobs scales
and node placements. Our solution also provides the ability
to maintain high throughput in the best effort class, securing
sufficient bandwidth for applications in order to guarantee
overall system throughput. Classes can also be tuned to
constrain certain traffic from monopolizing the network while
still being allowed to progress at predefined rates.

Our solution’s flexibility in provisioning multiple QoS
classes with explicit, tunable assured and peak rate limits
allows individual HPC sites to tailor class settings for their
needs. Furthermore, the use of QoS stall metrics can isolate
the adversarial traffic-to-class assignments and help tune the
configuration, deployment, and management of QoS in pro-
duction.
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