
Exploration of Congestion Control Techniques on
Dragonfly-class HPC Networks Through Simulation

Neil McGlohon∗, K. Scott Hemmert†, Kevin A. Brown‡, Michael Levenhagen†,
Sudheer Chunduri‡, Robert B. Ross‡, and Christopher D. Carothers∗

∗Rensselaer Polytechnic Institute, Troy, NY, USA
†Sandia National Laboratories, Albuquerque, NM, USA
‡Argonne National Laboratory, Lemont, IL, USA

Abstract—Ensuring optimal communication latency in High
Performance Computing (HPC) networks is of critical im-
portance to the efficient operation of facilitated applications.
Different application operations and types of tasks, such as IO
operations, can create a variety of traffic patterns across the
system interconnect. Some communication patterns, however, can
be problematic for overall system performance.

One traffic pattern of particular concern is the many-to-one or
incast. When packets sent from many different endpoints target
a singular, or small number of destinations, it can overwhelm
the receiving endpoints’ ability to process the traffic, resulting in
a cascading effect of induced congestion. This can have broad-
reaching, detrimental effects to other applications as their data
streams encounter induced congestion.

The concept of congestion control has been explored in various
HPC system technologies and is an important feature in state-
of-the-art networks such as Infiniband and the Cray Slingshot
interconnect. Because access to physical, full-scale interconnects
of bleeding-edge design can be challenging and the exact mech-
anisms of operation not publicly known, we look to simulation
to explore techniques for congestion control with a fine level of
flexibility not available on real-world systems.

We present and explore a mechanism for congestion control
which seeks to detect network congestion, identify its cause, and
abate it by throttling injection of identified aggressor endpoints.
Our work proposes, discusses and evaluates two similar mecha-
nisms for congestion control in two different network simulators
and their capabilities at mitigating the effects of congestion
on application communication performance and general system
packet latencies.

I. INTRODUCTION

The performance of applications on a High Performance
Computing (HPC) system is dependent on a number of factors.
While specifications and design details play a significant
role, one factor that is difficult to predict is the effect of
application interference as a result of contention on the under-
lying communication network resources. As HPC innovation
drives toward the threshold of ‘exascale’ computing [1], new
technologies for managing system resource contention must
be developed.

A single system may facilitate hundreds of independent
jobs simultaneously, each vying for network resources. When
network switches are overwhelmed with traffic, congestion can
arise, leading to increased packet latency and decreased ap-
plication communication performance. Making matters worse,
once network congestion manifests, it can spread. Analogous
to vehicles trying to avoid heavy congestion on a highway by

taking alternate routes on side-streets, secondary congestion
will consequently form.

Once a hot spot forms, if nothing is done to actively treat the
congestion, there is little hope of the situation resolving on its
own. The best way to combat congestion is to take measures
to avoid it in the first place. One solution would be reducing
the overall network allocation, running fewer applications at a
time. This might result in improved performance and reduced
interference but comes at a cost of a lower total application
throughput.

To combat congestion once it has already been discovered
on the network, a process called congestion abatement can be
used to treat it. The process of congestion abatement is rather
simple: reduce the injection rate of nodes contributing to the
congestion in the network. This process is maintained until
the congestion is naturally resolved as the existing in-transit
packets are routed and ejected from the network.

To effectively utilize congestion abatement, congestion must
first be detected and the causal ranks – the endpoints respon-
sible for creating the problematic traffic pattern – identified.
The three mechanisms: congestion detection, causation, and
abatement have been implemented in two HPC network simu-
lators, CODES [2] and the Structural Simulation Toolkit (SST)
[3]. By observing the results of congestion management tech-
niques used in two independent simulators, we can strengthen
confidence in the efficacy of said techniques.

In order to estimate the capabilities of the latest devel-
opments in network architecture, we simulate networks with
the same underlying topology as the HPE-Cray “Slingshot”
interconnect [4], the 1D Dragonfly [5], using these two
simulation platforms. Workloads applied to these simulated
networks include online workload models designed to emulate
common real world HPC applications and traffic patterns
using the Scalable Workload Models (SWM) [6] library and
SST’s Ember motifs [7]. We create problematic, aggressor,
incast traffic patterns which overwhelm exiting port buffers
and induce network congestion as a result.

In this work we present simulated implementations for
rate-limiting congestion control in two HPC interconnect
simulation platforms. We explore the effects of congestion
caused by problematic traffic patterns such as many-to-one,
including the inadequacy of just using adaptive routing for
handling this problem. Finally we demonstrate the efficacy

of the presented congestion control techniques at restoring
network performance.

II. BACKGROUND

We simulate an underlying HPC communication network
topology known as the 1D Dragonfly. The interconnection
scheme of Dragonfly networks features local groups of
switches with some degree of connectivity between switches
in each group. These groups of switches are also connected to
each other with global links providing one or more connections
between each pair of groups.

Dragonfly networks, dating back to the late 2000s, were
originally designed as a highly-scalable, cost-efficient, inno-
vation in HPC topology research. Notable real world sys-
tems featuring a Dragonfly interconnect include the HPE-
Cray “Cascade” XC series of supercomputers [8] and latest
“Slingshot” systems [4].

A. The Many-to-One Problem

Consider a single endpoint targeting another specific end-
point injecting packets using all of its available bandwidth. As
long as the targeted endpoint’s maximum ejection bandwidth is
at least as much as what is being injected and it is not targeted
by any other source endpoints, its output buffer will likely not
become overwhelmed (Figure 1a). This is because its capacity
to eject packets from the network is roughly equivalent to the
rate with which packets are arriving from the source endpoint.

On the other hand, if multiple endpoints target a single
specific endpoint and inject packets using all of their available
bandwidth, it’s easy for the targeted endpoint’s output buffer
to become overwhelmed (Figure 1b). This is the many-to-one
or incast problem.

As packets queue on the output port, waiting to be ejected
from the network, more and more arrive, eventually filling
up the buffer. Once packets fill up the buffer, new packets
destined for the same target will have to wait in buffers on
other switches due to lack of buffer space. Congestion is now
accumulating in the network.

The effects of congestion are not limited to the applications
that cause it; any applications sending packets that traverse
congested resources will also be negatively impacted. To
make matters worse, as long as the endpoints responsible for
creating the problematic traffic continue their behavior, the
problem will likely spread. This effect is shown in Figure 2,
which shows the percentage of total simulation time each port
connecting routers in the network is actively transmitting data,
sitting idle, or stalled waiting on credits for the cases of with
and without an active incast. In the figure, the higher the point
on the diagram, the more stalled the port. Figure 2a shows the
case for a 8000-node nearest neighbor communication pattern
(Halo3d26) with no incast on a 8192-node dragonfly network
using adaptive routing. Figure 2b shows this same pattern
running concurrently with a 63-to-1 incast pattern. Note how
many of the ports in the network spend a significant amount
of time stalled waiting for credits.

25GB/s Max 25GB/s

(a) Incoming traffic matches ejection bandwidth: healthy output
buffer.

25GB/s Max 25GB/s

25GB/s

25GB/s

(b) Incoming traffic exceeds ejection bandwidth: overwhelmed output
buffer.

8.3GB/s Max 25GB/s

8.3GB/s

8.3GB/s

(c) Incoming traffic limited to ejection bandwidth: healthy output
buffer.

Fig. 1: Example visualizations of switch output buffers
(rounded rectangle) connected to an endpoints by a single
25GB/s link. Each output buffer is supplied with aggregated
traffic sourced from elsewhere in the network. The maximum
amount of sustained aggregated traffic that this buffer can
handle without becoming overwhelmed is 25GB/s.

This is the problem that congestion control looks to solve.
It seeks to reduce the rate of injection of endpoints who,
as a group, target individual output ports. By reducing the
collective rate of injection to be equivalent to the rate of
ejection of the targeted output port (Figure 1c), then said
port will not become overwhelmed resulting in significantly
reduced network congestion.

B. Congestion Control
The process of congestion control, also referred to as

congestion management, employed by the works in this paper
follow a three-phase approach. Congestion is detected, its
cause is identified, and the source is abated. These three
modules work together to identify problematic traffic patterns
and address the problem at the source without adversely
affecting non-aggressor endpoints and applications.

1) Congestion Detection: Before network congestion can
be addressed, it must first be detected by the system. Without
an accurate and responsive mechanism to accomplish this, the
congestion issue will continue to grow as the aggressor ranks
continue to inject traffic without restriction.

To reduce the amount of time that problematic traffic can
continue to propagate unabated, a congestion control system
might employ a policy to detect warning signs of congestion.
If a system waits until the congestion has become problematic
to enact its abatement policy, then it will be that much harder
to address. In the mean time, other applications in the network
will be experiencing communication interference as network
resource contention remains high until the abatement policy
can return the network to a normal operative state.

2) Congestion Causation: Detecting when and where con-
gestion exists in the network is only one part of the pre-

(a) 8000-node Halo3d26

(b) 8000-node Halo3d26 plus 63-to-1 Incast

Fig. 2: Ternary plots of the effects of incast traffic on port
activity in a SST simulation of an 8000-node halo job with
and without a 63:1 incast. The plots show the percentage of
time each intra-group and global port spends idle, active or
stalled. The most pertinent metric is the stalled percentage,
and points higher in the plot correspond to higher percentage
of stalled time (percentages shown in red on the left). The halo
job creates practically no stalls in the network, whereas adding
the incast causes a large number of ports to have significant
stall time.

abatement control phase. The system needs to determine what
endpoints are responsible for creating the buffer backlog.
Without this information, the congestion control mechanism
might target non-problematic ranks and adversely affect non-
aggressor applications.

3) Congestion Abatement: The method of action utilized in
congestion control implementations for this work is utilization
of the process of abatement. Aggressor endpoints identified by
the congestion causation module receive an abatement signal,
ordering them to throttle their rate of injection.

If the rate of injection of all identified aggressor ranks is low
enough that they, collectively, cannot overwhelm the ejection
capabilities of any one endpoint, then the negative effects of
the otherwise problematic traffic pattern can be mitigated.

C. Simulation

As each simulator leveraged in this work, CODES and
SST, operate on a PDES engine, they have similarities. Most
importantly, any activity in the simulation is represented by
an event which modifies the state of entities in the simulation.

1) CODES: CODES is built up on top of the Rensselaer
Optimistic Simulation System (ROSS) [9] PDES engine. This
provides significant flexibility in how different events in the
simulation can be represented. It has been frequently utilized
to generate performance results and analysis of numerous HPC
network designs and technologies in the past [10]–[13].

This work utilizes the SWM models for the generation of
traffic and the 1D Dragonfly network model for switch and
endpoint terminal behavior.

2) SST: The Structural Simulation Toolkit (SST) is a PDES
platform specifically designed to simulate computer architec-
tures. SST uses a highly-scalable conservative synchronization
scheme to ensure that causality in the simulator is not violated
(i.e. events don’t arrive in the past). SST has been widely used
for both node- and system-level architectural simulations [14]–
[16].

SST has several packages to simulate networks. This work
uses the Merlin network models and Ember/Firefly work-
load/interface models. Merlin includes models for the inter-
connect switches and endpoint network protocol layers, while
Ember/Firefly provides the application models and network
stack model.

III. IMPLEMENTATION

This work analyzes the effects of congestion control tech-
niques on HPC network interconnects with problematic traffic
patterns such as an incast. Mechanisms for congestion con-
trol have been implemented in both the CODES and SST
interconnection network simulation platforms. The design of
the congestion control features between these two systems are
based on the same concepts discussed in Section II but have
slight variances in how the final product is implemented as
they were largely developed independently from each other.

A. CODES Congestion Control

The CODES Congestion Control system (referred to as
CODES_CC) and its implementation was designed to make
the control loop of detection, causation, and the resulting
abatement action as short as possible. The longer the duration
of this control loop, the more challenging it can be to abate
problematic traffic patterns.

The way that CODES_CC detects congestion is by monitor-
ing the output buffer usage. If this usage crosses a configurable
‘threshold of congestion’, then the switch considers that port
to be congested. Setting this threshold low will allow the
system to detect congestion early enough to effectively enact
its abatement policy. If this threshold is set too high, then
congestion can be detected too late and port buffers can
become overwhelmed before abatement signals can be sent.

The switch will consider that port congested until its output
buffer usage crosses a configurable ‘threshold of decongestion’

which is strictly lower than the one for detecting congestion.
Once a port buffer becomes decongested, normal signals are
sent by the switch to any ranks that it had previously sent
abatement signals to.
CODES_CC determines the cause of congestion by moni-

toring the source endpoint of every packet in all of its buffers.
When buffer congestion is detected, it identifies the endpoints
that have packets in a congested buffer and sends abatement
signals to these identified ranks.

When abatement signals are received by endpoints, they
keep track of what routers they have abatement orders from.
As long as there exists one active abatement order on a given
terminal, it will remain in a throttled injection state.

When the switch has sent out abatement signals from
detected port buffer congestion, it will calculate a minimum
amount of time before a normal signal will be sent based on
an estimation of how long it would take to reach the threshold
of decongestion. Every packet received for an abated port will
proportionally increment the time of expiration. An abatement
signal will be returned if the source endpoint had not yet been
sent one by the receiving switch.
CODES_CC tunes the strength of the abatement mechanism

in a similarly distributed manner. Network endpoints monitor
the aggregated rate of ejection of all packets that they have
injected into the network based on acknowledgement messages
received. When ordered to throttle by an abatement signal,
endpoints limit their maximum rate of injection to be equal
their current known rate of ejection. If N endpoints target a
single destination then the total ejection bandwidth will be
split amongst them with an average of 1/N . By limiting each
incast participant’s injection bandwidth to their known ejection
bandwidth, the target will not be overwhelmed.

This tuning has the advantage that if a rank is potentially
misidentified as an aggressor, but that their throughput is
generally high – and thus not encountering/contributing-to
congestion – then they will not be as harshly affected.

Conversely, however, it’s possible that an endpoint’s pack-
ets, due to congestion, have been starved from ejection and
thus the endpoint’s aggregate ejection rate is zero. This would
result in it’s abatement-limited rate of injection as also be-
ing zero leading to injection starvation. To avoid this, there
should be a minimum amount of guaranteed injection rate for
endpoints while abated. This minimum can be communicated
by the switches ordering the abatement by calculating the
source-endpoint cardinality of the identified problematic traffic
pattern.

B. SST Congestion Management

The Congestion Management system for SST (referred to
as SST_CM) is primarily focused on mitigating the effects of
incast traffic patterns on the rest of the network. The system
detects congestion by having each switch monitor all packets
targeting endpoints connected to it and using that data to
determine when likely incast traffic is occurring and which
sources are participating. This is done by notifying a central
tracking unit whenever a packet arrives in the switch targeting

one of the network endpoints attached to that switch. The unit
tracks the src, size and arrival time of each packet. These
items are then used to determine when to enable and disable
congestion management protocols.

To decide when abatement should start, SST_CM monitors
the amount of data and the number of sources that are currently
targeting each endpoint. When both of these values cross a
user defined threshold, the ranks currently participating in the
incast will be notified to reduce their injection bandwidth to the
target node (traffic to any other node will not be abated). The
abatement request has two parts. The first is a request to stop
sending all traffic to the affected target node for a specified
period (the start-up pause); this value is sent as a number of
bytes, which is translated to a time at the endpoint based on
bandwidth. The number of bytes is determined by multiplying
the number of outstanding bytes in the router targeting the
targeted endpont multiplied by a user settable scaling factor.
This value is set to allow the congestion that has already
built up in the system to start to clear. The second value is a
request to limit injection to 1/N , where N is the number of
participants in the incast. This ensures that the target node has
sufficient bandwidth to receive the data being sent. As more
incast participants are found, the N value is updated for each
participant.

Abatement continues until the number of streams partici-
pating in the incast falls below the abatement threshold. A
stream is considered to timeout after not receiving a packet
from that source host within a user tunable timeout period,
which is based on the current number of incast participants
(i.e. based on the current rate at which that node is injecting
into the network). The N value is updated in each source node
as streams timeout, allowing the incast to always proceed at
the ejection rate of the target. In all cases the CM control
mechanisms take a dedicated path through the router, therefore
only incurring the latency of an unloaded router.

IV. ENVIRONMENT

This work focuses on understanding the influence that
many-to-one-traffic-based network congestion can have on
other applications and how techniques for congestion control
can be utilized to mitigate it.

We subject simulated 1D Dragonfly networks to different
sets of communication workloads and traffic patterns in order
to gain insight into the capabilities of a congestion control
system. Specifically, we employ the Scalable Workload Mod-
els (SWM) [6] and SST Ember motif online MPI traffic
generation suites to supply both well behaved and aggressor
workloads. We can subject the same workloads with and
without congestion control and observe the benefits across a
number of metrics. Examples of metrics that we can record
include the total communication time of an application from
its first message sent to its last message received as well as
the end-to-end latency of each packet.

0 10 20 30 40 50
Time (ms)

0.00
0.25
0.50
0.75
1.00

In
je

ct
io

n
R

at
e

M
ul

t. CODES Congestion Control

Incast Start Incast End Allowed Injection Rate

Fig. 3: Allowed injection rate over time of rank 0 in a PeriodicAggressor workload which has several iterations of an
aggressive 100 rank incast between two iterations of a non-aggressive 2048 rank LAMMPS pattern. CODES_CC features are
activated immediately upon detection of the problematic pattern, throttling by ≈ 1/N , and the return to normal once it ceases.

A. Workloads and Traffic Patterns

1) LAMMPS: The SWM LAMMPS workload features a
variety of types of communication. There are a number of
messages sent both with and without waiting for acknowl-
edgement of receipt and Allreduce exchanges. The usage of
iterative blocking sends is a traffic pattern that is particularly
sensitive to congestion.

2) MILC: The SWM MILC workload has less variety than
LAMMPS but is still sensitive to congestion. It posts a number
of non-blocking sends and receives, waits for them all to
complete and then completes two Allreduce exchanges.

3) Incast: The SWM INCAST workload is a many-to-one
traffic pattern. One endpoint in the workload is the designated
recipient and each other endpoint sends a number of non-
blocking messages to it. Its usage as an SWM is designed to
be iteratively repeated; all communication from each iteration
will be completed before the next is allowed to start.

4) Periodic Aggressor: The SWM Periodic Aggressor
workload is a combination of the SWM LAMMPS workload
and the SWM INCAST workload. All ranks will participate
in a single iteration of the LAMMPS workload, then a subset
of them will enter a phase of a number of INCAST iterations.
Once the INCAST iterations have completed, the workload
will complete another iteration of LAMMPS. This workload
is useful for analyzing the responsiveness of a proposed
congestion control system; how quickly it can respond to a
problematic traffic pattern as well has how quickly it can return
to a normal state once the problem has ceased.

5) Fixed Pairs: The SWM FixedPairs workload fea-
tures blocking sends from one half of the workload’s ranks to
the other half – a simple bisection-bandwidth bound pattern.
We can apply several iterations of this simple workload over
the course of the simulation. If congestion is encountered
by the resulting streams of data, it will very noticeably
be impacted. This workload has been configured such that
the senders in each pair will send significant amounts of
sustained data but cannot exceed the ejection capabilities of
the receivers. This traffic can, however cause interference due
to resource contention on intermediate switches.

6) Halo3d26: The Halo3d26 workload is simulated using
the Ember motif model. The motif is designed to mimic
the communication pattern of many nearest neighbor com-
putations. Each MPI rank communicates with its 26 nearest

neighbors in the 3x3x3 cube surrounding it. The pattern
creates a variety of message sizes, from very large messages
on 2 faces, to single word messages at the corners. Each
communication phase is preceded by a compute phase and
followed by an Allreduce.

B. Network Configuration

This work features simulated 1D-Dragonfly networks of
two sizes. The smaller with 3,078 compute nodes is used for
simple demonstrations of the concept of congestion control
and features 342 36-port switches, arranged in 18-switch
groups each with 9 compute node and global links. This
arrangement provides 9 global links between each switch
group.

The larger, highly inter-connected, 8,192 compute node
network is used for more realistic-scale experiments. This
network features 512 switches with 64-ports, providing sixteen
32-switch groups with 32 global connections between each
switch group.

Specific interconnection patterns may differ depending on
the simulator used but high level inferences between generated
results are unlikely to be drastically affected as the specific
application rank to endpoint mapping is randomized for each
workload set to remove potential job placement bias, except
where noted otherwise. Of note, all simulations performed
with SST utilize an implementation of the Universal Glob-
ally Adaptive Load-balancing (UGAL) [17] routing algorithm
while CODES uses an implementation of Progressive Adaptive
Routing (PAR) [18].

C. Congestion Control Configuration

CODES_CC was configured to attempt and recognize con-
gestion before it becomes a problem to minimize the re-
sulting impact on other workloads. The threshold for which
CODES_CC detects congestion on a port buffer was set to
30% and a decongestion threshold of 10%. For the purpose of
establishing an upper bound of congestion control capability,
congestion notification messages for the administration of the
subsystem are delivered instantaneously. The consequences of
relaxing that restriction are explored in Section V-E.

The SST_CM studies use the following parameters: Input
throttling will occur when a switch detects 8 or more streams
with a total outstanding data count of 32kB. Once congestion
is detected, the router will request an initial pause of 4

times the number of outstanding bytes. The expiration time
of the stream is computed as 1.5 times the current number of
active streams times the serialization time of a network MTU
(maximum transfer unit). This gives a conservative estimate
on the maximum time to expect between packets in a stream.

V. EXPLORATION

To evaluate the performance of a proposed congestion con-
trol mechanism we present several experiments featuring well-
behaved workloads sharing a network with varying numbers
of aggressively competing many-to-one incast traffic patterns.

These experiments are meant to show the capabilities of
these proposed congestion control systems but, more im-
portantly, show how simulation can be a helpful tool in
understanding the dynamics of a given technology. Simulation
is not, by itself, a replacement for experiments with real-world
interconnects but is instead a way to explore novel or existing
behaviors and the dynamics of the system they operate in.

A. Responsiveness

To be able to adequately address congestion once it is
determined to exist in the network, a system for congestion
control must react quickly and with adequate strength to
throttle the identified aggressors. The faster that the system
can respond to a problematic traffic pattern, the less impact
that the resulting congestion will have on nearby application
traffic.

To demonstrate the responsiveness of the CODES_CC mod-
ule, a PeriodicAggressor workload was run in isolation
on a simulated 3,078 node dragonfly network. This workload
by itself will perform an aggressive incast pattern between two
well-behaved iterations of LAMMPS with 2,048 ranks. After the
first LAMMPS iteration has finished, the first 100 ranks perform
several iterations of a strong 99-to-1 INCAST. After those
have all finished, the application returns to a well-behaved
LAMMPS behavior.

Figure 3 shows the results of this experiment. Specifically
it depicts the allowed injection rate of rank 0, which partic-
ipates in both the LAMMPS phases as well as one of the 99
sending ranks in the INCAST phase. Near instantaneously,
as the INCAST phase begins, CODES_CC begins throttling
the participants of the many-to-one pattern down to one-
hundredth of their maximum injection bandwidth. Similarly,
very quickly after the INCAST phase ends, CODES_CC returns
the previously abated participants to their normal rate of
injection.

B. Effects of Adaptive Routing

In an entirely unoccupied network, the fastest path between
any two endpoints is also the path that contains the fewest
number of visited switches. This path and any of the same
total length are referred to as minimal routes. In an occupied
network, however, the shortest path may not always be the
fastest. Pockets or hot-spots of localized congestion dispersed
throughout the network can cause delays along given minimal
routes. Consequently, it can sometimes be beneficial to take

0

25

50

75

100

T
ot

al
 C

om
m

un
ic

at
io

n
T

im
e

(m
s) MIN PAR

lammps baseline
incast baseline

lammps w/o cc
lammps w/ cc

incast w/o cc
incast w/o cc

0.0 0.2 0.4 0.6 0.8 1.0LAMMPS2048 + INCAST100
0.0

0.2

0.4

0.6

0.8

1.0

CODES Congestion Control

Fig. 4: Communication time of a 2,048 rank LAMMPS sub-
jected to an aggressive 99-to-1 INCAST on a CODES simu-
lated 3,178 node 1D dragonfly.

(a) Minimal Routing

(b) Adaptive Routing

Fig. 5: Snapshot of CODES network buffer occupancies 2ms
(virtual time) into the simulation shown in Figure 4.

a non-minimal route [18] and attempt to re-route around
observed congestion.

This can, however, have an unintended consequence with
congestion causing traffic patterns [19]. By nature, congestion
causing patterns such as many-to-one become problematic
because they overwhelm the capacity of a single output buffer.
They then, through a cascading effect, consume more and more
buffer space further away from the ejection port and closer to
the sources until the built-up back-pressure eventually causes
the sources to self-limit. By enabling adaptive routing and al-

0
50

100
150
200

With SST Congestion Management

Incast Halo 1 Halo 2 Halo 3 Halo 4

0 250 500 750 1000 1250 1500 1750 2000 2250 2500
0

50
100
150
200

Without SST Congestion Management

0.0 0.2 0.4 0.6 0.8 1.0

Time (ns)

0.0

0.2

0.4

0.6

0.8

1.0
T

ot
al

 R
ec

ei
vi

ng
 B

an
dw

id
th

 (
G

B/
s)

Fig. 6: The figure shows the average bandwidth used by the various workloads overtime. For the incast motifs, the receive
bandwidth of the target is shown. For the halo jobs, the average receive bandwidth across all nodes are shown.

HALO1728x4 + INCAST64x2
0

1

2

3

T
ot

al
 C

om
m

un
ic

at
io

n
T

im
e

(m
s) SST Congestion Management

halo baseline
incast baseline
halo 1-4 w/o cm
halo 1-4 w/ cm
incast 1-2 w/o cm
incast 1-2 w/ cm

Fig. 7: Effects of SST_CM on four 1728-node Halo3d26 jobs
with two 63-to-1 incasts.

lowing non-minimal paths as possible alternative routes, there
are then more available lanes for congestion causing traffic
to occupy which spawns more opportunities for application
communication interference and resource contention.

This effect can be observed with a simple experiment on a
3,078 node dragonfly in Figures 4 and 5. We subject a 2,048
rank LAMMPS workload to an aggressive 99-to-1 INCAST
both with and without CODES_CC and also with and without
adaptive routing. With adaptive routing, the performance of
the LAMMPS workload was indeed degraded. Figure 5 shows
the buffer occupancy of each router in the network; adaptive
routing opens up many more lanes of traffic to the aggressive
incast pattern which was previously limited to minimal routes.
This has the effect of spreading traffic around the network,
impacting data streams that otherwise would not have been.
With congestion control enabled, it reigns in the aggressor and
adaptive routing can be effectively utilized again.

C. Throughput Restoration – SST

Aggressor traffic can become so problematic that it can
prevent applications from making substantial progress. We
have conducted an experiment using SST_CM to show its
capabilities in restoring system throughput. Figure 6 shows
a workload of four 1,728-node Halo3s26 motifs, each running
5 iterations on the 8,192 node dragonfly system. The incast

workload starts after the 2nd iteration starts, but before it
completes.

Without congestion management, we see that the ability
for the HALO workloads to effectively transmit their desired
exchanges is significantly limited by the presence of the incast.
The second iteration completes because the data is already well
underway when the incast begins, but all subsequent iterations
are delayed until the incast completes and network congestion
clears. A similar experiment was run

With SST_CM enabled, the system is able to find an
equilibrium where the incast ranks are able to inject only
what is effectively able to be ejected by the target node. This
prevents the occurrence of congestion from the overwhelmed
output port buffer. This returns the motif jobs to close to
their original performance. The performance of the incast job,
however is slightly affected. The first dip seen in the figure
is due to the start-up pause requested to help clear existing
congestion. The second dip is due to some streams timing out
and having CM disabled, then later re-enabled.

A similar workload set with the same Halo3d26 exchange
patterns but with two 63-to-1 incasts was also explored.
Figure 7 shows the time for each workload to complete its
communication. We observe that without SST_CM enabled,
the performance of the non-aggressor HALO workloads is
limited but when SST_CM is enabled, throughput is largely
restored.

Variances in the completion times of each workload are
the result of workload specific spatial rank-to-node mappings
but are consistent between experiments with and without
congestion control features. In particular, this experiment uses
linear mapping of ranks to nodes for the halo jobs to take
advantage of the nearest neighbor communication pattern. The
incast jobs are mapped randomly to the network before the
halo allocations are made, and the two jobs that run slightly
longer than the others with CM active, have the incast target
nodes inside their allocation.

LAMMPS1024x5 + INCAST100x10 + INCAST40x7 + FP256x7
0

10

20

30

40

50

T
ot

al
 C

om
m

un
ic

at
io

n
T

im
e

(m
s) CODES Congstion Control

lammps x5 baseline
incast100 x10 baseline
incast40 x7 baseline
fp x7 baseline
lammps 1-5 w/o cc
lammps 1-5 w/ cc
incast100 1-10 w/o cc
incast100 1-10 w/ cc
incast40 1-7 w/o cc
incast40 1-7 w/ cc
fp 1-7 w/o cc
fp 1-7 w/ cc

(a) Per-application Communication time.

0 1 2 3 4 5
End-to-End Latency (ns) 1e6

100

102

104

106

108

of

 P
ac

ke
ts

Without CODES Congestion Control

0 1 2 3 4 5
End-to-End Latency (ns) 1e6

With CODES Congestion Control

(b) End-to-end packet latency distribution; Log-y scale.

Fig. 8: Effects of CODES_CC on 29 simultaneously executed
workloads on a 8,192 1D dragonfly network: five 1,024-rank
LAMMPS, ten aggressive 99-to-1 INCAST, seven minimally
aggressive 39-to-1 INCAST, and seven 256-rank latency-
sensitive and interfering FixedPairs.

D. Throughput Restoration – CODES

This same occurrence is also observed in CODES. Prob-
lematic patterns can definitely impact applications co-existing
in the network and due to the effects shown in Section V-B,
adaptive routing can prove detrimental to overall network
performance despite the goal of improving it.

1) Throughput Study 1: In Figure 8, we show results of
a workload set of 8,192 allocated endpoints out of an 8,192
node dragonfly network. 5,120 total ranks are comprised of
five independent LAMMPS workloads; 1,792 total ranks are
comprised of seven independent FixedPairs workloads.
Two different types of INCAST workloads are also utilized
in this workload set. Ten jobs are comprised of independent
aggressive INCAST patterns each with 100 ranks (individually
identical to the one used in Section V-B). Four jobs are
comprised of smaller and less intense INCAST patterns of
40 ranks each.

We record that in Figure 8a, without congestion control,
each job is significantly impacted by the aggressive many-
to-one patterns – including the weaker INCAST workload.
The FixedPairs workload, which is designed to be very
sensitive and indicative of congestion should it exist in the
network is particularly affected, unable to complete until
after the aggressive INCAST completes. The FixedPairs
workload, which features repeated synchronized traffic streams
from specific ranks to other specific ranks, sends randomized
chords of sustained traffic across the network. Because no one

rank can continue to its next step until all have completed
their sends, if any one stream encounters significant delays due
to congestion, then the overall performance will be affected.
LAMMPS, which has several phases of blocking collective
operations is also significantly impacted.

Conversely, with congestion control, each workload apart
from the congestion causing INCAST aggressors is able to
complete with times much closer to their baseline “empty-
network“ communication times. These baseline numbers are
the maximum communication time of any one workload
per type operating in the network as a group: e.g. the
FixedPairs baseline is the maximum communication time
over all seven 256-rank FixedPairs workloads operating in
the network collectively without any other types of workloads
sharing network resources.

The less intense INCAST workloads performance dispar-
ity is particularly interesting. This implies that the 40 rank
INCAST patterns – which also have significantly reduced
payload intensity – are not ejection bound but that their
communication time is significantly impacted by any delay
in transmission. In contrast, even without congestion control
being active, the aggressive INCAST patterns in green are
already at their baseline. Furthermore, when their injection
rate reduced to a hundredth of their maximum, they are only
minorly affected. This means that the green INCAST patterns
are significantly ejection bound and even large delays in trans-
mission or injection do not affect their ultimate performance.

As in Section V-C, variations in per-job communication
times within each type of application are the result of the
randomly generated rank-to-node mappings.

Figure 8b shows distributions of the end-to-end packet
latencies for all packets injected into the network across
all applications. Without congestion control, the aggressive
applications traffic is spread throughout the network by the
adaptive routing, impacting the queuing times for packets in
nearly every buffer they encounter. When congestion control
is enabled, the adaptive routing is able to provide short
end-to-end latency times for the vast majority of packets.
Outliers in the data appear to be the result of poor choices in
adaptive routing as these are made based on local, not global,
information on each switch.

2) Throughput Study 2: While the experiment performed
in Section V-D1 showed good performance of CODES_CC,
the FixedPairs workload, used as an indicator for con-
gestion due to its sensitivity, can itself cause delays to other
application packets because of its sustained traffic. We, thus,
also simulate another workload set with in a similar manner
shown in Figure 9. This figure shows the effects of CODES_CC
on a workload set consisting of the same five 1,024-rank
LAMMPS workloads, four 625-rank MILC, four aggressive 99-
to-1 INCAST, and four weakly aggressive 39-to-1 INCAST
totalling 8,180 allocated endpoints in a 8,192 node 1D Drag-
onfly network.

We observe in Figure 9a that the comparatively small
INCAST patterns are still able to significantly reduce the
overall performance of the network. This follows from the

LAMMPS1024x5 + MILC625x4 + INCAST100x4 + INCAST40x4
0

10

20

30

40

50
T

ot
al

 C
om

m
un

ic
at

io
n

T
im

e
(m

s) CODES Congstion Control
lammps x5 baseline
milc x4 baseline
incast100 x4 baseline
incast40 x4 baseline
lammps 1-5 w/o cc
lammps 1-5 w/ cc
milc 1-4 w/o cc
milc 1-4 w/ cc
incast100 1-4 w/o cc
incast100 1-4 w/ cc
incast40 1-4 w/o cc
incast40 1-4 w/ cc

(a) Per-application Communication time.

0 1 2 3 4 5
End-to-End Latency (ns) 1e6

100

102

104

106

108

of

 P
ac

ke
ts

Without CODES Congestion Control

0 1 2 3 4 5
End-to-End Latency (ns) 1e6

With CODES Congestion Control

(b) End-to-end packet latency distribution; Log-y scale.

Fig. 9: Effects of CODES_CC on 29 simultaneously ex-
ecuted workloads on a 8,192 1D dragonfly network: five
1,024-rank latency-sensitive LAMMPS, four 625-rank latency-
sensitive MILC, four aggressive 99-to-1 INCAST, and four
minimally aggressive 39-to-1 INCAST.

findings shown in Figures 4, 6, and 7 where a single or a
couple incast traffic patterns can cause significant network
throughput problems. CODES_CC, when enabled, is able to
bring all workloads much closer to their baseline by limiting
the amount of traffic that these INCAST patterns can inject.
We also note that the weaker 40-rank INCAST workload did
not experience the same amount of interference that it had
encountered in the previous study.

Figure 9b shows that without CODES_CC, the adaptive
routing performs similar actions as before and spreads the
traffic around, increasing the thickness and length of the
tail end-to-end latencies distribution. With CODES_CC, more
packets are able to be routed minimally and the mean and
maximum packet latencies are significantly reduced.

This study demonstrates that when a network is given
just well-behaved applications that themselves do not create
significant amounts of interference combined with the single
congestion-type causing INCAST patterns, CODES_CC is ca-
pable of restoring near baseline network performance.

E. Exploring Effects of Congestion Notification Latency

One limitation of the implementation of CODES_CC is the
usage of instantaneous, out-of-band, communication of con-
gestion control management messages. These include the ejec-
tion acknowledgement notifications and the abatement/normal
signals from switches that instruct endpoints of congestion
control orders.

Instantaneous communication was first used to establish
a best-case scenario for the performance of the CODES_CC
system. If it could not effectively abate the congestion by iden-
tifying and limiting the injection of problematic traffic patterns
with instantaneous communication, it would be unlikely to do
any better once delay is added.

This, however, is not realistic in real-world production
systems and these messages are likely subject to their own
latencies depending on how far, and over what switches and
buffers, the messages must travel.

One advantage of simulation is the fine granularity with
which developers have control. The congestion control noti-
fications can be set to arrive with any time, including those
which are physically impossible to establish best-case scenario
performance results. In Figure 10 we do exactly that and relax
the expectation of congestion control notification arrival.

Specifically Figure 10 applies the same experiment exhib-
ited in Section V-D1 but with varying degrees of congestion
notification latency. We scale the latency from 200ns to
12,800ns and finally an extreme case of 1,024,000ns. In each
of these cases, we see a weakening of the performance of
the CODES_CC features. The FixedPairs workload which
acts as a ‘canary in the coal mine’ for congestion indicates
that congestion is steadily increasing in overall severity as
the congestion control notification latency increases. This is
corroborated by the similarly steady increasing length in the
tail of the end-to-end latency distributions. The sharp drop-off
forming at the end of the tail is an artifact of the fact that
congestion control is still operating in some capacity but is
not capable of completely eliminating it.

However, there is still an overall reduction in the ability
of the INCAST patterns to be able to dominate the network.
Even in the worst case with significant delays in congestion
control notification arrival times, the FixedPairs work-
load shows significant improvement (2 − 3×) over the case
without congestion control shown in Figure 8a. Similarly, the
LAMMPS workload observes a 3 − 4× improvement over its
no-congestion-control counterpart.

Similar trends were observed when this experiment style
were applied to the workload set used in Section V-D2 but is
excluded from this work for brevity.

VI. RELATED WORK

The problem of congestion in the modern understanding
of network switches has existed since the dawn of IP/TCP
protocols [20]. Numerous solutions have been proposed and
surveyed for general switching networks [21]. TCP, the proto-
col acting as the backbone for most data transmitted between
nodes in the public internet has historically been the main
focus for development of congestion control mechanisms.
There are many actions employed by TCP/IP networks to
prevent and mitigate congestion, surveys of these techniques
can be found in [22], [23]. Common actions by which TCP net-
works commonly recognize and address congestion is through
Explicit Congestion Notification (ECN) [24] and dropping
packets.

CC Latency=200ns
0

10
20
30
40
50

T
ot

al
 C

om
m

. T
im

e
(m

s) lammps #1-5 incast100 #1-10 incast40 #1-7 fp256 #1-7

CC Latency=800ns CC Latency=3200ns CC Latency=12800ns CC Latency=1024000ns

CODES Congestion Control

(a) Total communication time

0 1 2 3 4 5
Latency (ns) 1e6

100

102

104

106

108

of

 P
ac

ke
ts

CC Latency=200ns

0 1 2 3 4 5
Latency (ns) 1e6

CC Latency=800ns

0 1 2 3 4 5
Latency (ns) 1e6

CC Latency=3200ns

0 1 2 3 4 5
Latency (ns) 1e6

CC Latency=12800ns

0 1 2 3 4 5
Latency (ns) 1e6

CC Latency=1024000ns

CODES Congestion Control

(b) End-to-end packet latency distribution; Log-y scale.

Fig. 10: Effects of increasing the latency between the sending and receipt of congestion control notifications in CODES_CC.

HPC networks, however, operate in a different space. Some
difficulties of TCP/IP networking, like relying on transmission
of packets to and from devices in vastly different locales
and through switches owned and operated by neither the
source nor destination, have no analogue in high-performance
interconnects. Many HPC interconnect fabrics, like Mellanox
Infiniband [25], try to avoid the dropping of packets and when
they do it’s usually as a last resort to resolve an error. So while
in TCP networks, congestion can be, however aggressively,
removed by simply dropping all problem packets, this is
not preferred in HPC interconnects and is generally avoided.
There are mechanisms proposed, however, such as Speculative
Reservation Protocol (SRP), Small-Message SRP (SMSRP),
and Last-Hop Reservation Protocol (LHRP) which do rely on
the ability to drop problematic messages [26], [27] that could
be employed in HPC interconnects.

Many networks rely on Infiniband which, in contrast, is con-
sidered a loss-less interconnect and must assure that packets
not be dropped except in the case of component failure and
their Infiniband Congestion Control Architecture (CCA) [28]
relies on the communication of ECN messages to and from
endpoints to throttle their injection and slowly ease up over
time. The effects and tuning of the CCA system have been
explored by numerous works [29]–[32].

The authors of [33] propose an interesting solution by
introducing flow isolation in addition to injection throttling,
bringing in QoS-like techniques for reducing the impact and
severity of congestion.

The CODES approach to congestion control was inspired

from publicly available patents from HPE Cray [34]–[36],
from a keynote [37] and in the short description of the
Slingshot interconnect congestion control system [38].

VII. CONCLUSION

We have presented two independent implementations of
an injection-throttling-based congestion control mechanism
for the abatement and prevention of congestion in high-
performance computing interconnects.

Leveraging these implementations in the CODES and SST
network simulation platforms, This work explores the results
of experiments from two separate high performance network
simulation platforms, CODES and SST, with similar indepen-
dently developed congestion control mechanisms.

In both simulators the problem of the uninhibited many-
to-one traffic pattern and its impact on overall network per-
formance are observed. By identifying the aggressor ranks
and rate-limiting their injection, any congestion induced by
their traffic can be abated naturally as switches successfully
deliver packets to their destination endpoints. This prevents
the secondary problem of cascading, spreading, congestion.
Similar performance benefits are observed between the two
simulators, corroborating their findings.

Finally, this work makes the case for simulation as a
valuable tool for the exploration of new techniques toward
increasing overall system performance. The ability for fast,
fine-grained experimentation of proposed network interconnect
technologies can accelerate scientific discovery and innova-
tion; contributing progress along the path toward exascale
high-performance computing.

REFERENCES

[1] “Exascale computing project,” accessed on 05-24-2021. [Online].
Available: https://www.exascaleproject.org/

[2] J. Cope, N. Liu, S. Lang, P. Carns, C. Carothers, and R. Ross, “CODES:
Enabling co-design of multilayer exascale storage architectures,” in Pro-
ceedings of the Workshop on Emerging Supercomputing Technologies,
vol. 2011. ACM, 2011.

[3] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. Cooper-Balis et al.,
“The structural simulation toolkit,” ACM SIGMETRICS Performance
Evaluation Review, vol. 38, no. 4, pp. 37–42, 2011.

[4] “Slingshot interconnect – high performance network for hpe
cray supercomputers,” accessed on 05-24-2021. [Online]. Available:
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html

[5] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in 2008 International Symposium on
Computer Architecture. IEEE, 2008, pp. 77–88.

[6] J. Thompson, “Scalable workload models for system simulations,” in
Workshop on Modeling & Simulation of Systems and Applications 2014,
2014.

[7] S. D. Hammond, K. S. Hemmert, M. J. Levenhagen, A. F. Rodrigues,
and G. R. Voskuilen, “Ember: Reference communication patterns for
exascale.” Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States), Tech. Rep., 2015.

[8] G. Faanes, A. Bataineh, D. Roweth, E. Froese, B. Alverson, T. Johnson,
J. Kopnick, M. Higgins, J. Reinhard et al., “Cray cascade: a scalable
hpc system based on a dragonfly network,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society Press, 2012, p. 103.

[9] C. D. Carothers, D. Bauer, and S. Pearce, “Ross: A high-performance,
low-memory, modular time warp system,” Journal of Parallel and
Distributed Computing, vol. 62, no. 11, pp. 1648–1669, 2002.

[10] N. Jain, A. Bhatele, L. H. Howell, D. Böhme, I. Karlin, E. A. León,
M. Mubarak, N. Wolfe, T. Gamblin, and M. L. Leininger, “Predicting the
performance impact of different fat-tree configurations,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2017, pp. 1–13.

[11] M. Mubarak, N. McGlohon, M. Musleh, E. Borch, R. B. Ross, R. Hug-
gahalli, S. Chunduri, S. Parker, C. D. Carothers, and K. Kumaran,
“Evaluating quality of service traffic classes on the megafly network,” in
International Conference on High Performance Computing. Springer,
2019, pp. 3–20.

[12] N. Wolfe, M. Mubarak, C. D. Carothers, R. B. Ross, and P. H. Carns,
“Modeling large-scale slim fly networks using parallel discrete-event
simulation,” ACM Transactions on Modeling and Computer Simulation
(TOMACS), vol. 28, no. 4, pp. 1–25, 2018.

[13] N. McGlohon, R. B. Ross, and C. D. Carothers, “Evaluation of link fail-
ure resilience in multirail dragonfly-class networks through simulation,”
in Proceedings of the 2020 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, 2020, pp. 105–116.

[14] K. D. Underwood, M. Levenhagen, and A. Rodrigues, “Simulating red
storm: Challenges and successes in building a system simulation,” in
2007 IEEE International Parallel and Distributed Processing Sympo-
sium, 2007, pp. 1–10.

[15] A. Rodrigues, E. Cooper-Balis, K. Bergman, K. Ferreira, D. Bunde, and
K. S. Hemmert, “Improvements to the structural simulation toolkit,” in
Proceedings of the 5th International ICST Conference on Simulation
Tools and Techniques, ser. SIMUTOOLS ’12. Brussels, BEL: ICST
(Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering), 2012, p. 190–195.

[16] T. A. Connors, T. Groves, T. Quan, and S. Hemmert, “Simulation
framework for studying optical cable failures in dragonfly topologies,”
in 2019 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW). IEEE, 2019, pp. 859–864.

[17] A. Singh, “Load-balanced routing in interconnection networks,” Ph.D.
dissertation, Stanford University, 2005.

[18] N. Jiang, J. Kim, and W. J. Dally, “Indirect adaptive routing on large
scale interconnection networks,” in Proceedings of the 36th annual
international symposium on Computer architecture, 2009, pp. 220–231.

[19] G. Kim, C. Kim, J. Jeong, M. Parker, and J. Kim, “Contention-based
congestion management in large-scale networks,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2016, pp. 1–13.

[20] J. Nagle, “Congestion control in ip/tcp internetworks,” ACM SIGCOMM
Computer Communication Review, vol. 14, no. 4, pp. 11–17, 1984.

[21] C.-Q. Yang and A. V. Reddy, “A taxonomy for congestion control
algorithms in packet switching networks,” IEEE network, vol. 9, no. 4,
pp. 34–45, 1995.

[22] J. Widmer, R. Denda, and M. Mauve, “A survey on tcp-friendly
congestion control,” IEEE network, vol. 15, no. 3, pp. 28–37, 2001.

[23] S. H. Low, F. Paganini, and J. C. Doyle, “Internet congestion control,”
IEEE control systems magazine, vol. 22, no. 1, pp. 28–43, 2002.

[24] S. Floyd, “Tcp and explicit congestion notification,” ACM SIGCOMM
Computer Communication Review, vol. 24, no. 5, pp. 8–23, 1994.

[25] M. Technologies, “The official store,” Mar. 2019, [Online; retrieved
14-March-2019]. [Online]. Available: https://store.mellanox.com/

[26] N. Jiang, D. U. Becker, G. Michelogiannakis, and W. J. Dally, “Network
congestion avoidance through speculative reservation,” in IEEE Interna-
tional Symposium on High-Performance Comp Architecture. IEEE,
2012, pp. 1–12.

[27] N. Jiang, L. Dennison, and W. J. Dally, “Network endpoint conges-
tion control for fine-grained communication,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2015, pp. 1–12.

[28] D. Crupnicoff, S. Das, and E. Zahavi, “Deploying quality of service and
congestion control in infiniband-based data center networks,” Mellanox
White Paper, Rev, vol. 1, 2005.

[29] J. R. Santos, Y. Turner, and G. Janakiraman, “End-to-end congestion
control for infiniband,” in IEEE INFOCOM 2003. Twenty-second Annual
Joint Conference of the IEEE Computer and Communications Societies
(IEEE Cat. No. 03CH37428), vol. 2. IEEE, 2003, pp. 1123–1133.

[30] M. Gusat, D. Craddock, W. Denzel, T. Engbersen, N. Ni, G. Pfister,
W. Rooney, and J. Duato, “Congestion control in infiniband networks,” in
13th Symposium on High Performance Interconnects (HOTI’05). IEEE,
2005, pp. 158–159.

[31] G. Pfister, M. Gusat, W. Denzel, D. Craddock, N. Ni, W. Rooney,
T. Engbersen, R. Luijten, R. Krishnamurthy, and J. Duato, “Solving
hot spot contention using infiniband architecture congestion control,”
Proceedings HP-IPC 2005, p. 6, 2005.

[32] E. G. Gran, M. Eimot, S.-A. Reinemo, T. Skeie, O. Lysne, L. P.
Huse, and G. Shainer, “First experiences with congestion control in
infiniband hardware,” in 2010 IEEE International Symposium on Parallel
& Distributed Processing (IPDPS). IEEE, 2010, pp. 1–12.

[33] J. Escudero-Sahuquillo, E. G. Gran, P. J. Garcia, J. Flich, T. Skeie,
O. Lysne, F. J. Quiles, and J. Duato, “Combining congested-flow
isolation and injection throttling in hpc interconnection networks,” in
2011 International Conference on Parallel Processing. IEEE, 2011,
pp. 662–672.

[34] L. S. Kaplan, E. L. Froese, C. B. Johns, M. P. Kelly, A. F. Godfrey, and
B. T. Shields, “Congestion detection in a network interconnect,” U.S.
Patent 9 391 899 B2, Jul., 2016.

[35] ——, “Congestion causation in a network interconnect,” U.S. Patent
9 674 091 B2, Jun., 2017.

[36] E. L. Froese, C. B. Johns, A. F. Godfrey, L. S. Kaplan, M. P. Kelly, and
B. T. Shields, “Congestion abatement in a network interconnect,” U.S.
Patent 9 674 092 B2, Jun., 2017.

[37] M. Kagan, “The datacenter is a computer,” in 2020 IEEE Symposium
on High-Performance Interconnects (HOTI). Los Alamitos, CA, USA:
IEEE Computer Society, aug 2020, pp. i–ii.

[38] D. Sensi, S. Girolamo, K. McMahon, D. Roweth, and T. Hoefler,
“An in-depth analysis of the slingshot interconnect,” in 2020 SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). IEEE Computer Society, 2020, pp. 481–494.

