
Proceedings of the 2021 Winter Simulation Conference
S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo, and M. Loper, eds.

TOWARD UNBIASED DETERMINISTIC TOTAL ORDERINGS OF PARALLEL
SIMULATIONS WITH SIMULTANEOUS EVENTS

Neil McGlohon
Christopher D. Carothers

Department of Computer Science
Rensselaer Polytechnic Institute

110 8th St.
Troy, New York 12180, USA

Abstract

In the area of discrete event simulation (DES), event simultaneity occurs when any two events are scheduled
to happen at the same point in simulated time. Since events in DES are the sole mechanism for state change,
ensuring consistent real-time event processing order is crucial to maintaining deterministic execution. This
is synonymous with finding a consistent total ordering of events. In this work, we extend the concept
of virtual time to utilize an arbitrary-length series of tie-breaking values to preserve determinism in
parallel, optimistically executed simulations without imposing additional bias influencing the ordering of
otherwise incomparable events. Furthermore, by changing the core pseudo-random number generator seed
at initialization, different orderings of simultaneous events can be observed, allowing for deeper statistical
analysis. We implement and evaluate this mechanism using the Rensselaer Optimistic Simulation System
(ROSS) and discuss the importance of deterministic event ordering given the existence of event ties.

1 INTRODUCTION

Discrete event simulation (DES) is an effective method for simulating a wide variety of phenomena. It
establishes any occurrence in the simulation as being an event that occurs on a simulation entity. This
event alters state and occurs at a temporal coordinate in the virtual simulation time. Because simulation
state only changes when an event happens, the outcome of a simulation is entirely dependent on the initial
state and the set of ordered events that alters it.

It is expected that two identically configured simulations will produce identical results. Simulations
with this property are referred to as deterministic and is not uncommon for models developed in DES.
The design of a general DES engine, thus, may be of broader utilization if it can provide deterministic
execution. Maintaining determinism in a simulation can help confirm that there is not additional errant,
undefined behavior occurring. The defined rules of a deterministic simulation, given a singular input, result
in a singular answer.

From a high-level view, maintaining determinism appears to be a simple task: process events in the
order in which they are scheduled to occur. However, there are complications that can add complexity to
this objective. In a parallel processing environment, a simulation is partitioned across multiple processors,
with events occurring between entities that may not exist on the same processor. Because of this, the nature
of inter-processor clock drift and individual processing delays, ensuring a deterministic ordering of event
execution requires additional synchronization overhead.

Fortunately, this is generally a solved problem in Parallel Discrete Event Simulation (PDES) with various
synchronization methods for conservative parallel and optimistic parallel execution. One complication,
however, is event simultaneity: events that occur at the same coordinate in virtual time. Given two
simultaneous events that each result in different, non-commutative, state changes on the occurring entity,



McGlohon and Carothers

final simulation results will naturally depend on the ordering of these two events. To make matters worse,
the emergent existence of simultaneous events may not be obvious to a model developer – nor the potential
consequences such as loss of determinism.

In a parallel environment, an inter-processor event may arrive at the receiving processor after an earlier
timestamped event had been processed, violating the virtual time-guaranteed happens-before relation of
the two events. Correction methods like reverse-computation or checkpoints can be used to revert the
simulation to the last known safe state and ensure that a consistent and valid causal ordering is maintained
despite this phenomenon. However, there could be a problem when two events are to occur at the same
coordinates in virtual space-time. Given the encoded standard virtual timestamps alone, there is not a clear
way to define which event happens-before the other, which results in a loss of determinism.

To regain assured determinism, a set of rules can be defined dictating the expected ordering of two
simultaneous events. Given a strictly increasing event counter on each processor that increments with every
new event, then in the case of simultaneous events, we can give priority based on the sending processor ID.
If that, too, is identical, then we can give priority based on the event ID encoded from the event counter.
Determinism was regained but with one major caveat: the resulting ordering is influenced by the bias of
the chosen rule-set.

Because of this bias imparted by the ruleset, it is difficult to know for certain if the resulting simulation
behavior is exemplary of the simulated model’s behavior as a whole or a special case determined by said
ruleset’s influence on event ordering. Additionally, without a deterministic total ordering of events in a
parallel simulation, it is much more difficult to show that the parallel simulation is semantically the same
as if it were sequentially executed. In this work, we extend the definition of virtual time to include a
set of tie-breaking values and devise a mechanism for unbiased arbitration of simultaneous events in a
parallel discrete event simulator with optimistic execution. This is accomplished by utilizing a rollback-safe
tie-breaking uniform random number generator. We develop this mechanism into the Rensselaer Optimistic
Simulation System (ROSS) and exhibit its effects on simulation performance and model behavior. Because
ROSS, even in optimistic execution, utilizes fully deterministic pseudo-random number generators (PRNGs),
different RNG initialization seed values will yield different but deterministic event orderings, even in the
presence of simultaneous events, allowing for deeper statistical analysis of simulated models.

We propose and argue three new mechanisms for finding a deterministic total ordering of events in a
parallel discrete event simulation with simultaneous events:

1. Unbiased random total ordering of otherwise incomparable simultaneous events.
2. Biased random total ordering of otherwise incomparable simultaneous events, including events

created with zero-delay/offset.
3. Unbiased random total ordering of otherwise incomparable simultaneous events, including events

created with zero-delay/offset,.

2 PROBLEM DEFINITION

For this work, we specifically utilize the Rensselaer Optimistic Simulation System (ROSS) PDES en-
gine (Carothers, Bauer, and Pearce 2000; Carothers, Bauer, and Pearce 2002) which implements the Time
Warp protocol (Jefferson and Sowizral 1985; Jefferson, Beckman, Wieland, Blume, Loreto, Hontalas,
Laroche, Sturdevant, Tupman, Warren, Wedel, Younger, and Bellenot 1987; Jefferson, Beckman, Wieland,
Blume, and Loreto 1987) in conjunction with virtual time (Jefferson 1985). In a ROSS simulation, entities
or agents are represented as Logical Processes (LPs). These LPs are mapped to the various Processing
Elements (PEs) that may exist. Typically, there is one PE per physical MPI process that is participating in
the actual execution of the simulation.

ROSS is capable of being run in three main modes of synchronization. When the simulation is to be
executed on a single process, it is executed in sequential mode. Maintaining determinism in this mode
is trivial. The challenge of determinism comes when additional PEs are added to the simulation. With



McGlohon and Carothers

additional PEs comes the advent of remote events, those whose destination is on a different PE than its
source.

All propositions in this work are based on the following assumptions and definitions:
Assumption 1. In a parallel environment, arrival order of inter-processor messages is not guaranteed to
be consistent across executions of a simulation.

This is due to natural differences in local clock-speed. Even the smallest perturbation can lead to
enough clock drift to change the order in which any two events from different processors may arrive at a
third processor. If this is not accounted for, it can lead to drastically different final results. Fortunately,
this is addressed by Time Warp’s virtual time approach to parallel event processing.
Assumption 2. Every event in the simulation is encoded with a standard virtual timestamp specifying when
in simulation time the event occurs.

Without virtual time, a receiving process will have no ability to determine when in the future the event
should occur. Given this encoded virtual time, it is possible for the receiving process to deduce a partial
ordering of this received event and others that the process is aware of.
Assumption 3. Each processing element in a PDES system has a priority queue maintaining a proper
order of arrived events to be processed.

Because different LPs across PEs may be scheduling events at various times in the future, we cannot
assume that events will arrive in the exact order that they are to be executed – and by Assumption 1, can
not be guaranteed even if one tried to make it so. Thus, each PE should manage a queue, maintaining a
proper order in which events should be processed. This is almost certain to exist in any parallel simulator
that implements virtual time.

In an optimistically executed simulation, events that arrive at an LP after its current definition of ‘now’
are referred to as straggler events (Fujimoto 1990). To address this, optimistic simulations can be rolled
back. After rolling back the simulation to a known safe state, the undone events can be correctly ordered
in the priority queue and re-processed. None of this can be accomplished without some ordered queue.
Assumption 4. No LP can create events at a virtual time in the past relative to its own definition of virtual
time.

This is a safe assumption as the entirety of discrete event simulation relies on the basis of maintaining
causal-order; causal ordering can be formally stated as:
Definition 1 (from (Jefferson 1985)). Event A causes B (A → B) if there exists any sequence of events
A = E0, E1, . . . , En = B such that for each pair Ei and Ei+1 of adjacent events either (a) Ei and Ei+1

are both in the same process and the virtual time of Ei < Ei+1 or (b) event Ei sends a message to be
received at event Ei+1.

Because, in virtual time simulations, the virtual space-time coordinates of an event define the happens-
before and causal relations of events, the only instance where two events are considered incomparable is
when they have identical virtual timestamps, i.e. simultaneous events or an event tie.
Definition 2. Two events are considered comparable if a consistent happens-before relation can be inferred
between the two. If no happens-before relation can be inferred, then they are considered incomparable.
Definition 3. An event created with zero virtual-time delay between its encoded timestamp and the creating
LP’s definition of ‘now’ (timestamp of the causal event) is referred to as a zero-offset event.
Assumption 5. Every LP has at least one, rollback-safe, pseudo-random number generator stream solely
dedicated to generating uniform random values to encode into events that it creates.

To achieve the goal of creating an unbiased ordering of simultaneous events via a pseudo-random
number generator, it is imperative that this stream be completely independent of other streams accessed in
the model and deterministically rolled back. For reasons which will be explained in detail in Section 3.2,
it is also critical that this PRNG can be deterministically rolled back to a previous state should the events
it generated values for be canceled or rolled back.

With the above assumptions and definitions, we posit the following problem:



McGlohon and Carothers

Problem Statement 1. Given an optimistically or conservatively executed parallel discrete event simulation
with the above assumptions, consisting of a partially ordered set of virtual-time encoded events E which
may or may not contain event ties, find a mechanism which ensures unbiased total ordering of E such that
any subsequent executions of the simulation are deterministic.

3 EVENT SIMULTANEITY

Another way to phrase Problem 1 is: given a simulation of events, find a mechanism to randomly establish
the partial ordering found by a parallel simulation in a way that is deterministic and identical to the total
ordered version found by a sequential execution of the same simulation. If all events in a partially ordered
simulation are comparable to each other, then the partially ordered events are also considered totally ordered.

As briefly mentioned in Section 1, deterministic ordering of simultaneous events can be achieved by
establishing a ruleset that is enforced by each PE dictating which event happens-before another. If this
ruleset is precise enough to render every possible event in the simulation comparable to every other event,
then a deterministic total ordering can be established from its partial counterpart. In Figure 1, events A,B,C
and D all occur simultaneously in the simulation. How this ruleset is defined will specify how these events
are ordered to occur in the simulation. The orderings of C and D are specifically of consequence due to
them each operating on the same LP.

3.1 Ordering Bias

This ruleset would, in effect, turn incomparable, simultaneous, events into comparable events that occur
simultaneously yet infinitesimally before or after one another. An example ruleset would be as follows, in
decreasing order of importance, cascading down to break any subsequent value ties.

Ruleset 1 Ordering with Explicit
Bias
Give priority to:

1. Events with lower
virtual timestamp

2. Events with lower PE
ID

3. Events with lower LP
ID

4. Events with lower (per
PE) event ID

Ruleset 2 Ordering without Bias
given 2-way event ties

Give priority to:

1. Events with lower
virtual timestamp

2. Events that win a coin
flip

Ruleset 3 Ordering without Bias
given n-way event ties

Give priority to:

1. Events with lower
virtual timestamp

2. Events with lower
tie-breaking value

This, however, will result in a single final result with likely few options that would allow users to
explore alternate orderings. Perhaps with greater consequence is the amount of bias that this ruleset instills
into the simulation. In the case of a timestamp tie, it will always give priority to whatever event came from
a lower numbered processor. This means that LPs mapped to lower numbered processors, for instance,
will always take precedence should they tie and that the same simulation but with different numbers of
PEs or a different mapping will likely generate different final results.

Given the possibility of a two-way event tie, it is possible to relinquish the simulated model from the
influences of our bias by instead relying on a fair coin flip.

With this ruleset, given two tied events, A and B, there is a 50% chance of being ordered as [A,B] and
a 50% chance of being ordered as [B,A]. If we can randomly generate the values necessary for this coin
flip to occur, then we can, without bias, order all events in a simulation with at most 2-way event ties.



McGlohon and Carothers

A

LP0 LP1 LP2

B D

C

Figure 1: In this LP-Event diagram, all events: A,B,C, and D occur at each of their respective LPs
simultaneously. Determining how these events, C and D in particular, should be ordered in a final total
ordering may have an effect on final simulation results.

This can easily be extended to n-way ties. Instead of a coin-flip, encode an i.i.d. uniform random
(UR) value into an event when it is created and implement the following ruleset.

Given an n-way tie, each event having its own independently generated uniform random value, any
specific ordering of these events constitutes a single possibility (occurring with probability 1/n!) out of
all possible permutations of these tied events. Furthermore, the probability of any two tied events being
ordered a specific way with respect to each other is 50%. This method is equivalent to what is described
and proven in (Cormen, Leiserson, and Rivest 2001) as PERMUTE-BY-SORTING yielding the following
lemma:
Lemma 1 (From (Cormen, Leiserson, and Rivest 2001)). Given a list of length N with N distinct i.i.d.
uniform random values, a uniform random permutation can be found by assigning one value to each item
in the list and sorting according to these values.

If the probability of tie-breaker collision is negligible, then it is possible to generate a uniform, or
unbiased, random permutation by sorting based on the uniform randomly generated key. It follows that by
using Ruleset 3, we can extract an unbiased random ordering of an n-way event tie.

One may question whether any random ordering of these events is safe. The most important thing in
ordering simultaneous events is to uphold event causality: no event caused by another can happen before
the other event.
Lemma 2. If there are no zero-offset events in a simulation, then no events participating in a tie caused
any other events in said tie.

Proof. Given the contrapositive: if events participating in the tie did cause other events in the tie, then
there are zero-offset events. Suppose an event participating in the tie caused another event in the tie.
Because both events are participating in the tie, the virtual time difference between the two would be zero.
By definition, the caused event was scheduled with zero-offset. Thus, by contrapositive proof, if zero-offset
events are not allowed, then no events in an event tie caused any other events in the same tie.

A consequence of this lemma is that if there are no zero-offset events in a simulation, then because
there is no causal linking between any events participating in the tie, no two events in the tie are ordinarily
comparable. If they were comparable by their virtual timestamps, then they would not be in this tie in the
first place.

Because events that are not causally related to each other and incomparable could be processed in any
order without violating causality, then a random permutation of these events constitutes a valid ordering.
Proposition 1. Providing, in addition to the standard virtual timestamp, a secondary uniform random
value and comparing tied events based on that will yield an unbiased ordering of events without violating
causality given no zero-offset events.

Proof. Lemma 2 assures that no events in any event tie will have a causal relationship with any others
in the same tie. Because these events, given their standard virtual timestamp, are thus incomparable, any



McGlohon and Carothers

possible permutation of these events is causally safe, and by Lemma 1, an implementation of Ruleset 3
will allow these events to be comparable and yield an unbiased ordering of events.

For clarification, we define the combination of a virtual timestamp and any secondary values determining
event priority as a virtual time signature. Events created in accordance to Proposition 1 that are incomparable
by their virtual timestamps are comparable by their virtual time signature.

It is important to note, however, that Lemma 1 relies on distinct values from its uniform random number
generator. By the nature of PRNGs, this is not possible. For the purposes of our work, though, we utilize
sufficiently precise PRNGs with very large periods, and thus we assume the probability of generating
non-distinct values is negligible.

Should this probability still be considered too high, additional tie-breaking values can be generated
and encoded via supplementary, independent, PRNG streams and applying PERMUTE-BY-SORTING
recursively to sub-lists containing PRNG value collisions. This effectively increases the bit precision of
the primary tie-breaking value, making overall collision even less likely while maintaining the expected
lack of bias.

3.2 Determinism with Randomness

We have now established that given a good choice of ruleset, we can create an unbiased ordering of events
in a simulation. But this alone does not grant determinism. The ROSS simulator guarantees Assumption 5,
allocating an independent PRNG stream on every LP with the sole duty of generating the tie-breaker values
encoded into each event that that LP creates.

One valuable property of PRNGs is that given a specific seed, the sequence of values generated from
it is deterministic. In a sequentially or conservative parallel executed simulation, this allows for pseudo-
randomness without sacrificing determinism. In neither of these execution modes is there ever a rollback
to a previous simulation state.

When executing a parallel simulation optimistically, however, the simulation must be tolerant of
rollbacks. If the state of a PRNG stream, indicating the position of the ‘next’ value in the sequence, is
not also rolled back when necessary, then a different set of numbers will be generated for events when the
simulation is resumed. As a result, LP state changes and decisions based on that PRNG stream will differ
from an execution where said rollbacks did not occur – a loss of determinism.
Corollary 1. Using a rollback-safe tie-breaking uniform random value in execution of Proposition 1 will
yield a deterministic unbiased ordering of events without violating causality given no zero-offset events.

4 ZERO-OFFSET EVENT SIMULTANEITY

Proposition 1 makes certain assumptions about the nature of the problem and the simulation environment
it operates in. Specifically, it does not allow for zero-offset events to exist in the simulation.

To allow for zero-offset events in a simulation, there are some finer details that must be established to
ensure that a deterministic, valid, unbiased total ordering of events can be found. Part of what makes this
difficult is that the act of creating zero-offset events, by definition, creates event ties. As a result, an event
that generates a new event with a zero-offset is creating a new event that, in virtual time, occurs at the
same time as the event that created it. In this instance, the order in which these two events are committed
to simulation history is very important.

It’s also important to note that while Assumption 4 is standard for virtual timestamps, the same must
also be held true for any happens-before relations inferred from an extended definition of virtual time.
Furthermore, the virtual time signature of any event must be strictly greater than the time signature of its
causal parent.



McGlohon and Carothers

A

A B

A B

A B B' A'

T(0)

T(A)

T(B')

T(A')

A'

"Happens Before" B'

A B B'

B

T(B) A'

B' A'

A''

Figure 2: Diagram showing event processing queue state while processing the simultaneous events given
in the table on the left. T (−) represents the time in the simulation after a given event has been processed.
Event A′′ is created by A′ but, according to its tie-breaker value, should happen before B′, which has
already been processed as designated by a slash.

4.1 Challenge of Zero-Offset Events

We have shown with Proposition 1 that an unbiased total ordering of simultaneous events can be found
with a uniform random value acting as a tie-breaker. This works by establishing an unbiased hard rule
of how any two events should be ordered in the simulation. Proposition 1 worked because any arbitrary
ordering of otherwise incomparable events will result in a valid simulation.

This becomes tricky once zero-offset events are introduced. Because a parent event and its zero-offset
child have the same virtual timestamps but one event definitely caused the other, the ordering in which
these two events should be ordered in the final simulation history cannot be arbitrary.

In a solution using Proposition 1, to create an unbiased random ordering of events, an absolute
comparison of i.i.d. random tie-breaking values is utilized. Given an event E that generates a child event
E′ with zero-offset, it is entirely possible that the uniform random tie-breaking value of E′ could be less
than that of event E. By our extended definition of virtual time, this would imply that event E′ happened
before event E which is impossible since event E directly caused E′. This contradiction caused by a
zero-offset event is exactly the same as what would happen if a time-traveling negative-offset event were
created. This establishes the following:
Lemma 3. No event can be created in a way that would classify it as happening before any events that
caused or happened-before it.

If all we consider are their standard virtual timestamps, the two events are incomparable. However,
they are comparable by the ordered chain of causality. Definition 1 does not account for zero-offset events;
if we are to have a stable simulation with zero-offset events, we need to extend our definition of virtual
time to ensure that the virtual time signature of E < E′ and so on for any descendants of event E′.
Definition 4. An event that shares a standard virtual timestamp with another but has a lower tie-breaking
value is defined to happen infinitesimally before the other. The converse implies that the other event happens
infinitesimally after the first.
Definition 5. A zero-offset event, sharing the virtual timestamp with that of its parent, is considered to
happen infinitesimally after its parent. The converse implies that the parent happens infinitesimally before
its child(ren).

To demonstrate the challenge of utilizing the tie-breaking mechanism we have established in Proposi-
tion 1, let us assume that we have some ability to ensure that Lemma 3 is maintained while using the same
tie-breaking mechanism as before. Then we have nothing to prevent the possibility of generating events
with virtual time signatures to happen infinitesimally before others that have already been processed.

Consider a sequentially executed simulation; there is no ability to roll-back events should a new one
be generated that happens before one previously processed – if a mechanism cannot be used for generating
a valid ordering in sequential, then it is unlikely to consistently work for parallel executions either. As an
example, two events, A and B, each generate a zero-offset child event: A′ and B′. A′ generates a single
zero-offset child, A′′. The events are each scheduled to occur at the same point in virtual time but have



McGlohon and Carothers

A

B'

A'

A''.40

.50

.80
LP0 LP1 LP2

B.10
.15

Figure 3: LP-Event Diagram depicting events all simultaneously occurring with the same virtual timestamp
but depicted with varying legal tie-breaking values encoded using the additive scheme described in Section 4.2.
The final ordering in the simulation for these tied events is: [A,B,B′, A′, A′′]

uniform random generated tie-breaking values to determine the order of events not directly caused by each
other; the virtual time and tie-breaker values for these events are shown to the left in Figure 2.

In this sequential simulation, we would start by processing events A and then B. This would schedule
two new zero-offset events A′, and B′. We could process these two in order according to their tie-breaker
values without issue (B′ first). However, after processingA′, another child event is created, with a tie-breaker
value that is lower than B′. The simulation processing queue state for this example can be observed in
Figure 2. The result of this is an irreparable error in the simulation. In a sequential execution, an effective
negative-time event was received, breaking Lemma 3. In an optimistic execution, we will enter an infinite
rollback scenario and cause instability in sequential.

This is exactly the challenge of creating a fair deterministic ordering of zero-offset events: it is not
possible for the simulator to know if a zero-offset event will create another zero-offset event until after its
processed. Thus, how can a fair random ordering of zero-offset tie events be determined?

4.2 Biased Random Causal Ordering

It is now clear that a single pair of randomly defined tie-breaking values is insufficient for ordering two
events given the existence of zero-offset events. It would always be possible to violate causality and
that should never be possible; any scheme to determine ordering two events must guarantee causality is
maintained.

We know, however, that a simulator that utilizes standard virtual time can generate a deterministic total
ordering of events if no ties exist because all events have a unique time, and the final ordering should just
be monotonically increasing by their timestamp. This is possible because when new events are created,
they are encoded with an offset: an additive ‘time from now’ value. So long as that value is not negative,
it guarantees causality is maintained; as long as the value is positive, it guarantees determinism.

What if, when generating a zero-offset event, instead of using a random tie-breaking value from (0,1),
we generate that random value but add it to the random tie-breaking value of the parent event. The new
tie-breaking value will be strictly greater than the parent, assuring that any comparison of the two will
always order the parent first. A LP-Event diagram using the same generated values in the previous example
but adding consecutively generated tie-breaking values when creating child events is shown in Figure 3.
Proposition 2. Providing, in addition to the standard virtual timestamp, a secondary value defined by
summing deterministic uniform random values generated by causally related zero-offset events and comparing
tied events based on that will yield a randomized-but-biased deterministic ordering of events, including
zero-offset events, without violating causality.

Proof. Given four simultaneous events A,B,C, and D where A → B and A → C → D and B,C,D
are zero-offset from A with additive tie-breaker values. Assume that an event D is an event that violates
Lemma 3 in conflict with a previously processed event B. The tie-breaker value of D is strictly greater
than that of its parent: C. The only way for D to be created so that it happens before B is if C also
happened before B. If C happened before B, then no ordering of B and D would violate Lemma 3. Thus,



McGlohon and Carothers

by contradiction, additive tie-breaking values will safely allow for zero-offset event tie-breaking without
violating causality established from Lemma 3.

This does allow for randomness to be introduced in the ordering of events but it introduces some
potentially unintended bias into the comparison of tie-breaking values. For example, given two events
scheduled for the same time: A and B. Event A creates a zero offset child A′ who creates a zero offset child
A′′. The four events are each scheduled for the same virtual time. If the tie-breaker value for descendants
is additively generated, then the probability that event A′′ comes before event B is not 50%. it is possible
that, based on the tie-breaking value, that A′′ happens before B, but it is far more likely that B happens
before A′′ because the expectation for its tie-breaker value is lower than that of A′′.

This is because the tie-breaking value encoded into events A′ and A′′ are no longer a uniform random
value from (0,1) but is instead sampled from an Irwin-Hall distribution (Johnson, Kotz, and Balakrishnan
1995). The expected value of an Irwin-Hall value is proportional to the number of uniform random values
added to generate it, and thus the more zero-offset descendants recursively created, the less likely they
are to happen before another, independent, event. In a way, this may seem natural, but it is important to
remember that these events are all scheduled by the model to happen at the same time.

This method will assuredly result in a deterministic ordering and this ordering will be somewhat
randomized based on the simulation’s input seed. Is there, however, a fairer way to break ties within
zero-offset events?

4.3 Unbiased Random Causal Ordering

When trying to find a fair way to order simultaneous events, something to consider is whether it even
makes sense for other events to interject between an event and its zero-offset child. The two related events
are supposed to occur simultaneously with the exception of one being causally dependent by the other (the
child happens infinitesimally afterward). Our next proposition is, thus, based on the following assumption:
Assumption 6. The only event that can interject between a parent event and its zero-offset child is another
zero-offset child from said parent event.

What made the additive tie-breaker value in Section 4.2 successful in establishing a deterministic total
ordering was that it guaranteed that a zero-offset child event will have a value strictly greater than its
parent. It also established a unique timestamp that will not – should there be more descendants – violate
some established order of other already processed events.

We can devise another mechanism that will ensure that any subsequent zero-offset children of a parent
event be processed before other independent events (with a greater tie-breaking value than said parent).
Consider ordering two sequences of numbers. There are numerous ways to pick some relation and choose
which should be considered first in an ordering of the two sets. One common way is through lexicographical
ordering. Just as one would find where to place new words into an English dictionary, we start by comparing
the first items in the two sets. Should those two match, we recursively compare each of the subsequent
items in the sequences until we find a pair that is different. Determining which of the two is ‘less’ than
the other, lexicographically, is then based on that final comparison.

For example, let us consider two sequences S1 = [5, 3, 9, 3] and S2 = [5, 3, 4, 6]. Lexicographically,
S2 < S1 because in the third component-wise comparison, 4 < 9. We also observe that it does not matter
how long the sequence of S2 is; as long as those first three numbers remain in each sequence, then S2 < S1

always.
We can extend our definition of virtual time again to include – not a single tie-breaking value but

– a sequence of tie-breaking values. The sequence is comprised of the tie-breaking values of historical
zero-offset parental events. Whenever a new event is created, a new tie-breaking value is generated and
appended to the back of this running list. When a regular-offset event is created, the sequence is discarded
and then the newly generated tie-breaking value for the current event is added as the sole value.



McGlohon and Carothers

When comparing two tie-breaking sequences of different lengths but all N components of the shorter
one match the first N components of the longer sequence, priority is given to the shorter one as this can only
happen if the event owning the shorter sequence caused the other. Referring back to the English dictionary
analogy, the single-letter word ‘A’ comes before ‘aardvark’ but ‘aardvark’ comes before ‘apple’.

The result of this extension allows for us to make every single event in the simulation comparable to
one another via the new virtual time signature. In this case, the virtual time signature is defined as the
sequence of the virtual timestamp followed by the regular-offset tie-breaker and all consecutively generated
zero-offset tie-breakers. Because of the benefits of lexicographical ordering, causality is guaranteed as
any zero-offset descendant’s time signature will be strictly greater than its parent, grandparent, etc. The
happens-before comparison of any two tied events that are unrelated will, as in Proposition 1, be based on
a comparison of two uniform-random values.

Additionally, the comparison of any two tied events that are related will also be based on a comparison
of two-uniform random values unless they are causally locked to a single relative ordering because one is
a descendant of the other, yielding:
Proposition 3. Providing, in addition to the standard virtual timestamp, a secondary sequence of values
defined by deterministic uniform random values generated by causally related zero-offset events and
comparing tied events lexicographically based on that will yield an unbiased random deterministic ordering
of events, including zero-offset events, without violating causality.

Proof. The exact same logic as demonstrated in the proof of Proposition 2 can be applied here to guarantee
determinism as lexicographical ordering provides the same strict less-than/greater-than relation between
two events. Using the same events from that example, however, we can observe that should C happen
before B, then D assuredly happens before B as it happens infinitesimally after C. The determination
of the ordering of D and B still falls down to a fair comparison of two uniform random values: the two
generated for B and C. The probability of D happening before B is, effectively, randomly determined by
a fair coin flip and is unbiased.

We recognize that the restriction imposed by Assumption 6 detracts from the generality of Proposition 3
and relaxing this assumption is a point of continuing research.

5 MODELS OF EVALUATION

We have evaluated our proposed solution with various methods to observe its capability as well as
the performance impact of the solution’s overhead. This was accomplished through strong scaling and
qualitative studies with different simulated models run on ROSS with and without the unbiased tie-breaking
mechanism described in Section 4.3. Additionally, we have run a number of simulations using the CODES
high-performance computing interconnect network simulation framework which uses ROSS as its simulation
engine to showcase the types of simulations that the tie-breaking mechanism enables (Cope, Liu, Lang,
Carns, Carothers, and Ross 2011).

5.1 Scaling and Qualitative Studies

In the simple case, we observe the performance impact on a PHOLD simulation benchmark model. PHOLD,
does not produce significant numbers of event-ties so the benefit of the tie-breaker is not observed and
allows us to estimate the expected impact of the tie-breaking overhead (generating and encoding sequences
of random values). Results of this preliminary model experiment are available in a technical report available
on ArXiV (McGlohon and Carothers 2021).

But the original intention of the tie-breaking mechanism was not to improve the performance of models
without event ties; it was to guarantee determinism in parallel simulations despite the existence of event-
ties. To test this objective, a couple of new benchmark simulation models were developed: Event-Ties
and Event-Ties-Stress. The first generates chains of events with random destinations and integer



McGlohon and Carothers

timesteps. Furthermore, subsequent events with zero-offsets are created by each received event to a degree
before new incremented integer delay events are created. This produces a very high degree of event-ties and
is enough to elicit non-determinism in a standard ROSS simulation without the tie-breaking mechanism.
With the use of the tie-breaking mechanism, determinism was maintained.

The Event-Ties-Stressmodel follows a similar procedure to the Event-Tiesmodel but instead
of chains of zero-offset events it produces trees of zero-offset events.

These studies provide an interesting perspective into how simultaneous events, especially those with
zero-offset, can be a challenge to simulate. These models exhibit the benefits that a deterministic tie-breaking
solution can provide. Detailed model behavior is discussed at greater length in the associated technical
report (McGlohon and Carothers 2021).

5.2 Network Simulation Modeling

One area of study that lends itself well to PDES is high performance computing interconnect network
simulation. All interactions between entities in the network, such as packet routing, can be modeled
as events in ROSS. The CODES network simulation framework allows for the study of massive scale
simulated networks facilitating billions of simulated packets. Different technologies, such as adaptive
routing, Quality-of-Service techniques, and hypothetical network topologies can be explored with this
framework.

To orchestrate these simulations, CODES models use many different types of PDES events which,
due to their high frequency, are prone to simultaneity. To make matters more difficult, many types of
events may be configured with zero-offset. To overcome the problems, like non-determinism, that come
with simultaneous events, CODES attempts to avoid event-ties by incorporating small additive noise to
all created events. This, however, is a stopgap measure and cannot guarantee that event ties cannot occur.
There are more caveats as well; similar to the issues discussed with the mechanism described in Section 4.2,
this additive tie-avoidance scheme will impose bias into how the simulation will order events that otherwise
would have occurred simultaneously.

Lastly, and potentially most importantly: by adding additive (non-zero mean) noise to the timestamps
of all events, packet metrics and all measurements based off them and other event timings will be influenced
by this incremental noise.

An unbiased tie-breaking mechanism allows us to explore different possibilities of orderings of simul-
taneous events, sampling from the space of all possible simulation occurrences for the given model.

6 DISCUSSION

All simulations performed in this work were executed using at most 4 nodes of the AiMOS supercomputer
at Rensselaer Polytechnic Institute’s Center for Computational Innovations (Center for Computational
Innovations, Rensselaer Polytechnic Institute ). Each node contains two IBM Power 9 processors each
with 20 cores with 3.15GHz clocks and 512GiB RAM. For simplicity of scaling experiments, we utilized
a maximum of 32 processors per node. Inter-node communication is facilitated by an Infiniband EDR Fat
Tree communication network.

6.1 Simulated Model Results

Generally the results of the strong scaling studies on the PHOLD model were typical. There was some
minor overhead related to the generation of tie-breaking values for each new event and there was a slight
performance reduction as a result, it became less noticeable at higher levels of parallelism.

The Event-Ties model, with its high degree of tied, zero-offset, events proved particularly difficult
for ROSS to easily simulate without the tie-breaking feature. Shown in Figure 4a, as the simulation
was executed with greater numbers of PEs, the runtime soared to abnormal levels. This was caused
by the simulation engine’s inability to make substantial progress as incomparable, simultaneous, events



McGlohon and Carothers

770
780
790
800
810
820

w/ deterministic tiebreaker
w/o deterministic tiebreaker

1 2 4 8 16 32 64 128
0

10
20
30
40
50

0.0 0.2 0.4 0.6 0.8 1.0
Number of Ranks

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ul
at

io
n 

Ru
nt

im
e 

(s
)

Event-Ties - Strong Scaling

(a) Event-Ties strong scaling study.

1 2 4 8 16 32 64 128
Number of Ranks

500

1000

1500

2000

2500

3000

Si
m

ul
at

io
n 

Ru
nt

im
e 

(s
)

Event-Ties-Stress - Strong Scaling
w/ deterministic tiebreaker

(b) Event-Ties-Stress strong scaling study.

Figure 4: Strong scaling studies of models with and without the deterministic tie-breaking mechanism.

550000 600000 650000 700000 750000 800000
Maximum Latency (ns)

0

50

100

150

200

250

300

Maximum Packet Latency with Varying Seeds

(a) Maximum end-to-end packet latencies histogram

4.4 4.5 4.6 4.7 4.8
Max Comm. Time (ms)

0

50

100

150

200

250
Maximum Communication Time with Varying Seeds

(b) Maximum application communication time histogram

Figure 5: Histograms of 1,000 communication network simulations with varying tie-breaking RNG seeds.

could not be committed to simulation history until GVT could progress and GVT could not effectively
progress because at higher parallelism, the likelihood of out-of-order events becomes greater. Different
configurations of ROSS simulation parameters could potentially improve its ability to handle larger degrees
of zero-offset event ties but the trial-and-error process of tuning these parameters is not necessary if a
tie-breaking mechanism was utilized.

Similarly, the Event-Ties-Stress model scaling study was not effectively simulated on ROSS
without the tie-breaking mechanism at nearly any degree of parallelism and thus only the deterministic
tie-breaking version results are displayed for this model in Figure 4b.

We also applied the capabilities of the tie-breaking mechanism to run 1,000 identical simulations of a
LAMMPS communication workload across 2,048 nodes of a simulated 3,078 node CODES 1D-Dragonfly
network – but each simulation featured a unique tie-breaking RNG seed. All tie-avoiding noise that is
usually added to CODES event timestamps was removed, allowing for the occurrence of event-ties.

Aggregating all of the generated final measurement data, we can observe how different orderings of
simultaneous events can have a drastic impact on final measurements and, consequently, any conclusions
inferred from them. Figure 5 shows histograms of the maximum end-to-end packet latencies and simulated
application communication time from these simulations. It is important to note that the RNG seeds that
determine general LP behavior remained constant and that the variance in final simulation results depended
only on the different simulation occurrences made possible by different orderings of simultaneous events.

If simultaneous events are avoided through artificial methods then ordering bias is introduced and
fair sampling of all simulation occurrences becomes impossible. A fair tie-breaking mechanism makes a
simulator tolerant of simultaneous events and allows for such studies to be performed.



McGlohon and Carothers

Table 1: Subset of final results of the sequential k = 1, optimistic k = 32 and k = 128 runs for the
Event-Ties model with and without the deterministic tie-breaker (TB).

Simulation Net Events LP1 Final Value
w/o TB: k = 1 39,190,528 35.0814
w/o TB: k = 32 39,190,528 34.4111
w/o TB: k = 128 39,190,528 34.4010
w/ TB: k = 1 39,190,528 34.7264
w/ TB: k = 32 39,190,528 34.7264
w/ TB: k = 128 39,190,528 34.7264

6.2 The Case for Determinism

All simulations in this work utilizing the deterministic tie-breaking feature were verified to exhibit the expected
determinism. In contrast, simulations executed without it did not consistently generate a reproducible result.

One might argue that any additional overhead or performance impact is too great to warrant utilizing
the feature. Simple models, such as PHOLD, have LP state that is not dependent on event ordering and
event timings are already based on randomized values. Thus, even though event ties do occasionally occur
in the simulated model, their ordering does not affect how many net events there are in the final simulation.

The same cannot be said for models sensitive to simultaneous event ordering. Table 1 shows extracted
results from a few runs from the Event-Ties scaling results featured in Figure 4a. We observe small
differences in the final results of LP state when there is no arbitration of simultaneous events – a lack of
determinism. With the deterministic tie-breaker functionality enabled, however, determinism is restored and
the parallel executions are identical to their sequential counterpart. The difference between the sequential
runs with and without the tie-breaker is to be expected and is because the rules dictating order in the
tie-breaker simulations also affect the order of events in the sequential version.

With the Event-Ties model – and any model whose generated events depend on LP state at time
of processing – however, event ordering explicitly affects the final result. In the example shown in Table 1
it may appear that the executions without the tie-breaker were close enough but this is a product of the
simplicity of the model and not indicative of what one could expect with other, more complicated, models.
Table 1 also shows that simply looking at the number of net events alone is not sufficient for identifying
determinism in a simulated model.

Even if a simulation completes faster without the overhead of a tie-breaking mechanism, the level of
performance observed in a model with simultaneous events may simply be borrowed with determinism
offered as collateral. The goal of parallel discrete event simulation is to recreate a semantically identical
sequential simulation but distributed across different processing elements. If, from the general simulation
engine’s point of view, determinism in the parallel execution not assured, then it has, by definition, failed
in this objective.

7 RELATED WORK

The topic of event simultaneity and ordering in parallel simulations has been discussed in various contexts
over the span of decades (Rajaei and Ayani 1993; Ronngren and Liljenstam 1999; Kim, Seong, Kim,
and Park 1997; Peschlow and Martini 2006; Peschlow and Martini 2007a; Peschlow and Martini 2007b;
Lamport 1978; Wieland 1997). In (Lamport 1978), the topic of distributed logical and physical clocks,
causal ordering conditions and happens-before relations is discussed but notes that the included theory
makes no requirement about the ordering of incomparable or simultaneous events. The clocks discussed
base their perception of time based on the perceived happens-before relations to other events.

Virtual time (Jefferson 1985) takes a slightly different approach by inferring happens-before relations
from the encoded timestamps giving a simulated model the power to define when events happen in relation
to each other. In (Schordan, Oppelstrup, Thomsen, and Glück 2020), the authors also extend ROSS’
definition of virtual time to encode lower order bits to break event ties.



McGlohon and Carothers

Much of this paper was inspired by the work performed in (Wieland 1997). The author makes arguments
that given a simulation with n simultaneous events, then the correct final result is the mean of all n! possible
event orderings. Without some mechanism to effectively explore various possible orderings a correct final
result is not achievable. In our work we provide a method that allows for random sampling of the possible
event orderings.

That same year, the authors of (Kim, Seong, Kim, and Park 1997) proposed an event ordering mechanism
for simultaneous events which also employed an extension to the basic timestamp for encoding event priority.
This mechanism provided identical results between a sequential and parallel executed simulation and is
similar in practice to our definition of biased random causal ordering.

The authors of (Ronngren and Liljenstam 1999) establish methods for breaking ties based on a logical
clock interpretation of event causality or user defined priorities. They also briefly argue how different
permutations of otherwise incomparable events should be considered and will inherently affect the outcomes
of future events but do not elaborate on a solution to effectively explore this space. Similarly, in (Peschlow and
Martini 2006; Peschlow and Martini 2007a; Peschlow and Martini 2007b) the authors note the importance
of discovering other potential outcomes of simultaneous event orderings and propose a PDES branching
mechanism tool that facilitates this.

8 CONCLUSION

In summary, we have proposed three solutions to the problem of maintaining a deterministic ordering of
events in a parallel conservative or optimistically executed discrete event simulation given the possibility
of n-way simultaneous events with and without zero-offset events. This solution leverages a deterministic
pseudo-random number generator to encode values for use in breaking these n-way event ties into a specific,
execution-consistent, ordering. This ordering can be unbiased and varied by changing the initial seed of the
simulation’s random number generators, which allows for further statistical analysis of execution results.

We evaluated the performance impact of the proposed solution and observed a marginal impact in a
standard PDES benchmarking model. We also demonstrated that it can make it easier for simulations with
a high degree of zero-offset events to make progress. Finally, we demonstrated how this feature can be
useful for analysis in the area of network simulation.

REFERENCES
Carothers, C. D., D. Bauer, and S. Pearce. 2000. “ROSS: A High-performance, Low-memory, Modular Time Warp System”.

In Proceedings of the Workshop on Parallel and Distributed Simulation, 53–60. Bologna, Italy.
Carothers, C. D., D. Bauer, and S. Pearce. 2002. “ROSS: A High-performance, Low-memory, Modular Time Warp System”.

Journal of Parallel and Distributed Computing 62(11):1648–1669.
Center for Computational Innovations, Rensselaer Polytechnic Institute. “Artificial Intelligence Multiprocessing Optimized

System (AiMOS)”. https://cci.rpi.edu/aimos (accessed Nov 1, 2020).
Cope, J., N. Liu, S. Lang, P. Carns, C. Carothers, and R. Ross. 2011. “CODES: Enabling Co-design of Multilayer Exascale

Storage Architectures”. In Proceedings of the Workshop on Emerging Supercomputing Technologies, 6. Seattle, WA, USA.
Cormen, T. H., C. E. Leiserson, and R. L. Rivest. 2001. Introduction to Algorithms. 3rd ed. Cambridge, MA, USA: MIT Press.
Fujimoto, R. M. 1990. “Parallel Discrete Event Simulation”. Communications of the ACM 33(10):30–53.
Jefferson, D., B. Beckman, F. Wieland, L. Blume, and M. D. Loreto. 1987. “Time Warp Operating System”. ACM SIGOPS

Operating Systems Review 21(5):77–93.
Jefferson, D., B. Beckman, F. Wieland, L. Blume, M. D. Loreto, P. Hontalas, P. Laroche, K. Sturdevant, J. Tupman, V. Warren,

J. Wedel, H. Younger, and S. Bellenot. 1987. “Distributed simulation and the time warp operating system”. Technical
Report OSTI 5639121, University of California, Los Angeles, CA, USA.

Jefferson, D., and H. Sowizral. 1985. “Fast concurrent simulation using the time warp mechanism”. Technical Report ADA129431,
Rand Corporation, Santa Monica, CA, USA.

Jefferson, D. R. 1985. “Virtual Time”. ACM Transactions on Programming Languages and Systems 7(3):404–425.
Johnson, N. L., S. Kotz, and N. Balakrishnan. 1995. Continuous Univariate Distributions, Volume 2. 2nd ed. Hoboken, NJ,

USA: John Wiley & Sons.

https://cci.rpi.edu/aimos


McGlohon and Carothers

Kim, K. H., Y. R. Seong, T. G. Kim, and K. H. Park. 1997. “Ordering of Simultaneous Events in Distributed DEVS Simulation”.
Simulation Practice and Theory 5(3):253–268.

Lamport, L. 1978. “Time, Clocks, and the Ordering of Events in a Distributed System”. Communications of the ACM 21(7):179–
196.

McGlohon, N., and C. D. Carothers. 2021. “Unbiased Deterministic Total Ordering of Parallel Simulations with Simultaneous
Events”. ArXiV:2105.00069v1.

Peschlow, P., and P. Martini. 2006. “Towards an Efficient Branching Mechanism for Simultaneous Events in Distributed
Simulation”. In Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation, Volume 2006,
133.

Peschlow, P., and P. Martini. 2007a. “A Discrete-Event Simulation Tool for the Analysis of Simultaneous Events”. In Proceedings
of the 2nd International Conference on Performance Evaluation Methodologies and Tools, 1–10. Nantes France.

Peschlow, P., and P. Martini. 2007b. “Efficient analysis of simultaneous events in distributed simulation”. In 11th IEEE
International Symposium on Distributed Simulation and Real-Time Applications, 244–251. Chania, Greece.

Rajaei, H., and R. Ayani. 1993. “Design Issues in Parallel Simulation Languages”. IEEE Design Test of Computers 10(4):52–63.
Ronngren, R., and M. Liljenstam. 1999. “On Event Ordering in Parallel Discrete Event Simulation”. In Proceedings of the

Workshop on Parallel and Distributed Simulation, 38–45. Atlanta, Georgia, USA.
Schordan, M., T. Oppelstrup, M. K. Thomsen, and R. Glück. 2020. “Reversible Languages and Incremental State Saving in

Optimistic Parallel Discrete Event Simulation”. In Reversible Computation: Extending Horizons of Computing, 187–207.
Cham, Switzerland: Springer International Publishing.

Wieland, F. 1997. “The Threshold of Event Simultaneity”. In Proceedings of the 11th Workshop on Parallel and Distributed
Simulation, 56–59. Lockenhaus, Austria.

AUTHOR BIOGRAPHIES
NEIL MCGLOHON is a research scientist at Rensselaer Polytechnic Institute’s Center for Computational Innovations (CCI).
He received Ph.D and M.S. degrees in computer science from RPI in 2021 and 2016 respectively; in 2014 he received his
B.S. in physics from the University of Oklahoma. His research interests include parallel and distributed computation and
high performance computing network simulation including the exploration of the effects of network congestion on application
performance through simulation. He acts as the primary maintainer for an open-source massively parallel discrete event simulation
framework for simulating HPC communication networks to facilitate research collaborations with internal and external partners.
nmcglo.rpi@gmail.com, https://nmcglo.com

CHRISTOPHER D. CAROTHERS is a faculty member in the Computer Science Department at Rensselaer Polytechnic
Institute. He received the Ph.D., M.S., and B.S. from Georgia Institute of Technology in 1997, 1996, and 1991, respectively.
Prior to joining RPI in 1998, he was a research scientist at the Georgia Institute of Technology. His research interests
are focused on massively parallel computing which involve the creation of high-fidelity models of extreme-scale networks
and computer systems. These models have executed using nearly 2,000,000 processing cores on the largest leadership
class supercomputers in the world. Additionally, Professor Carothers serves as the Director for the Rensselaer Center for
Computational Innovations (CCI). CCI is a partnership between Rensselaer and IBM. The center provides computational and
storage resources to a diverse network of researchers, faculty, and students from Rensselaer, government laboratories, and
companies across a number of science and engineering disciplines. The flagship supercomputer is an 8 peta-flop (PF) IBM
AC922 hybrid CPU/GPU supercomputer named ”AiMOS” which serves as the primary testbed for the IBM AI Hardware
Center. chris.carothers@gmail.com, https://www.cs.rpi.edu/∼chrisc/

mailto://nmcglo.rpi@gmail.com
https://nmcglo.com
mailto://chris.carothers@gmail.com
https://www.cs.rpi.edu/~chrisc/

	INTRODUCTION
	PROBLEM DEFINITION
	EVENT SIMULTANEITY
	Ordering Bias
	Determinism with Randomness

	ZERO-OFFSET EVENT SIMULTANEITY
	Challenge of Zero-Offset Events
	Biased Random Causal Ordering
	Unbiased Random Causal Ordering

	MODELS OF EVALUATION
	Scaling and Qualitative Studies
	Network Simulation Modeling

	DISCUSSION
	Simulated Model Results
	The Case for Determinism

	RELATED WORK
	CONCLUSION

