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ABSTRACT
It has long been said that neuromorphic computing will yield enor-
mous energy improvements onmachine learning based computations
and will be part of the next computing revolution. Yet, how likely is
it that these goals are met once hardware-level constraints have been
accounted for? In this paper, we benchmark the performance of a spin-
tronics hardware platform designed for handling neuromorphic tasks.
Spintronics devices that use the spin of electrons as the information
state variable have the potential to emulate neuro-synaptic dynam-
ics in hardware. Unlike their CMOS counterparts, spintronics-based
neurons and synapses can be realized within a compact form-factor,
while operating at ultra-low energy-delay point.

To explore the benefits of spintronics-based hardware on realistic
neuromorphic workloads, we developed a Parallel Discrete-Event
Simulation model called Doryta, which is further integrated with a
materials-to-systems benchmarking framework. The benchmarking
framework allows us to obtain quantitative metrics on the through-
put and energy of spintronics-based neuromorphic computing and
compare these against standard CMOS-based approaches. Although
spintronics hardware offers significant energy and latency advan-
tages, we find that for larger neuromorphic circuits, the performance
is evidently limited by the interconnection networks rather than
the spintronics-based neurons and synapses. Thus, it becomes im-
perative to identify interconnect materials that would natively offer
low latency and consume less energy than the current copper-based
interconnects.

Through Doryta we are also able to show the power of neuro-
morphic computing by simulating Conway’s Game of Life. We show
that Doryta obtains over 400× speedup using 1,280 CPU cores when
tested on a convolutional, sparse, neural architecture.
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1 INTRODUCTION
Neuromorphic computing is a non-von Neumann approach to com-
puting that creates a human brain-like computational model to per-
formmachine learning, among several other tasks, in a highly energy-
efficient manner. For example, as part of the DARPA SyNASPE pro-
gram, IBM created an instance of a spiking neuromorphic processor,
called TrueNorth. This chip has 4096 neurosynaptic cores with a
total of 1 million spiking neurons and 256 million re-configurable
synapses and consumes only 63 milliwatts when executing a multi-
object detection and classification program using real-time video
input [31]. In 2018, Intel created the Loihi spiking neuromorphic
processor capable of performing on-chip learning [14]. According
to Hasler and Marr [18], biological neurons and synapses, if realized
truly efficiently in silicon, would be able to compute 1018 multiply-
accumulate operations (MAC) per second using only 1 watt of power.
To that end, it is important to continue improving the state-of-the-art
and further reduce the hardware costs associated with neuromorphic
computing.

To seek out improvements at the hardware level, one can make
use of spintronics devices utilizing magnetic materials, including
antiferromagnets and ferromagnets, for the fabrication of electronic
neurons and synapses in a brain-inspired architecture. Spintronics
devices made using magnetic materials are non-volatile and can
mimic the dynamics of biological neurons and synapses in hardware
in an energy-efficient and compact form-factor, potentially opening
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Figure 1: Source of inspiration for Spiking Neural Networks and abstraction levels. (a) The biological spiking neuron. (b) A
model (Leaky-Integrate Fire) of the biological spiking neuron [16, Fig. 4.1]. (c) Software-realizable neuron model: neuron
(soma) and synapses.

a new artificial intelligence (AI) paradigm endowed with real-time
learning, adaptation, and prediction. Such brain-inspired AI hardware
can be used in remote, “edge computing” environments with size,
weight, and power constraints.

To facilitate our evaluation of spintronics-based neuromorphic
hardware, we have developed a multi-scale modeling and simula-
tion approach where physical hardware costs (i.e., energy, area, and
latency) are calculated for key neuromorphic operations including
neuron integration, neuron fire and signal communication. These
performance models are then imported into a new neuromorphic
parallel simulation model called Doryta. Doryta enables the energy
performance exploration of these devices for neuromorphic applica-
tions across a full-scale neural network architecture model.

The key contributions of this work include:

(1) Development of Doryta, a deterministic, parallel spiking neu-
ral network simulation platform that is able to execute real
neuromorphic applications in simulation, validated against
existing spiking neural network tools.

(2) Implementation of a Game of Life as a pure neuromorphic ap-
plication model for Doryta, demonstrating that spiking neural
networks are Turing-complete.

(3) Evaluation of parallel Doryta simulation performance wherein
the Game of Life neuromorphic application model is able to
obtain over 400× speedup using 1280 CPU cores.

(4) Quantification of the energy, chip area, and runtime perfor-
mance of spintronics-based neurons and synapses for image
classification tasks resulting in three to six orders ofmagnitude
improvement in energy-delay product over CMOS designs.

2 BACKGROUND
In this section, we briefly introduce the component parts of spiking
neural networks and summarize parallel discrete event simulation.

2.1 Spiking Neural Networks
Ubiquitous Artificial Neural Networks (ANNs) are not the only rel-
evant bio-inspired development to come out of studying the brain.
Spiking Neural Networks (SNNs) [4], as the name implies, are based
on the same foundation as ANNs, the biological spiking neurons.

The biological spiking neuron is one of the prevalent neuron types
in the brain. It responds to stimuli in the form of spikes. The simplest
electrical models of the spiking neuron corresponds to the Leaky-
Integrate Fire (LIF) Neuron [4], see Figure 1, which can be described

by only two procedures: a differential equation that determines how
the voltage of the neuron changes as a function of time

C
dV (t)
dt

= I (t) − V (t) −Ve
R

; (1)

and a conditional rule that dictates how the neuron discharges

if V (t) > Vth then set V (t) = Vreset and fire (2)
where V (t) is the voltage of the neuron at time t , I (t) is the input
current to the neuron, C is the capacitance, R is the resistance, and
Ve , Vreset and Vth are the resting, reset and threshold potentials, ac-
cordingly.

Notice that there is no general analytical solution for the two rules,
leaving us to seek a numerical solution. To numerically simulate
Equation 1, we discretize it into ∆t time steps

V (t + ∆t) = V (t) + ∆t −(V (t) −Ve ) + I (t)R
τ

, (3)

where τ ≡ RC .
The neurons in a neural network are interconnected via axons

and synapses. We use the term synapse to refer to the connection
between two neurons at the software level: from a neuron that fires
and sends a spike to a neuron that receives it. At the hardware level,
neurons are connected via physical wires or interconnects, while the
synapse is a non-volatile memory to weight the connection between
the neurons. All synapses have two attributes: how much current
arrives to the neuron and a delay. For simplicity, we assume that
all synapses have the same delay, one clock cycle. This implies that
I (t), in Equation 3, represents the summation of all currents from the
synapses that receive a spike at time t , i.e.

I (t) =
∑
i
WiSi (t), (4)

whereWi is the weight for the i-th synapse, and Si (t) is either 1 or 0
indicating whether a spike was received or not to the i-th synapse at
time t , respectively.

With neurons and synapses, we can construct many complex
structures, also called neural-network (NN) architectures or simply
architectures. In fact, we can construct the same architectures created
for ANNs. Although, it is not trivial to transform an arbitrary ANN
and its weights into an SNN with its parameters, an NN architecture
can be implemented in either. A full SNN model is then composed
of an architecture and three procedures (or operations): the leak
operation (Equation 3), the integrate operation (Equation 4) and
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the fire operation (Equation 2). At the hardware level, we realize
these three operations using spintronics-based spiking neurons and
synapses, and metallic interconnects.

2.2 Spintronics Neurons and Synapses
The field of spintronics is expected to support semiconductor-based
microelectronics in ‘Beyond Moore’s’ information technologies [17,
29]. In contrast to the conventional electronics that deals with the
charge of an electron, spintronics utilizes the spin of an electron to
manipulate, transmit, store and detect information. Spintronic de-
vices can be fabricated using back-end-of-the-line CMOS processes
and, therefore, realized in modern fabrication facilities without much
re-tooling. At the heart of a spintronic device is a magnetic mate-
rial: ferromagnetic (FM) or antiferromagnetic (AFM), which acts as
the active component and displays neuro-synaptic dynamics when
perturbed by external input (e.g., current pulse or magnetic fields).
The spin configurations of FM and AFM materials are distinct which
makes them functionally unique as the building blocks of neuromor-
phic hardware.

FM-based spintronics nano-devices, such as magnetic tunnel junc-
tions, are commonly used for storage, sensing, logic, interconnec-
tions, and as non-linear radio-frequency oscillators [19]. Recently,
it was experimentally demonstrated that the FM-based nonlinear
oscillators could be used to build circuits that embed neural func-
tionality and can perform speech and digit recognition with high
accuracy [43]. FM devices have also been used for realizing synaptic
behavior in hardware [6]. However, it is challenging to implement
energy-efficient and ultra-fast spiking neurons with FM devices since
the underlying physics limits their spiking rate to a few GHz [24].
Unlike FM materials, AFMs have intrinsic frequencies in the THz
regime [24]; therefore, in an NN architecture, it is advantageous to
use them as hardware emulators of spiking neurons. Meanwhile, fer-
romagnetic materials are useful to implement the synaptic behavior
as they can efficiently store information in a non-volatile manner in
their magnetic textures.

2.2.1 Antiferromagnetic Spiking Neurons. Antiferromagnets, such as
NiO, Cr2O3, alloys of Mn (e.g., Mn3Ir), etc., are a class of magnetic ma-
terials that are internally magnetic on a microscopic scale but possess
negligible net magnetization on a macroscopic scale, owing to their
atomic arrangement. In principle, they can be used to realize non-
linear signal generators and detectors operating in the GHz to THz
frequency spectrum [24]. Such AFM-based signal generators have
been theoretically shown to emulate spiking neurons in hardware
within a compact form-factor [25, 40], as shown in Figure 2. Their
energy efficiency and ultra-fast spiking characteristics will enable
significant network-level performance benefits when compared with
their CMOS counterparts. In order to excite the spiking response in
an AFM, an input current surpassing a threshold is provided to the
AFM. Based on the material parameters and the dimensions, the AFM
neuron’s spike rate and performance can be efficiently tuned [25, 40].

2.2.2 Ferromagnetic Non-volatile Synapses. Memristive dynamics
based on domain wall (DW) movement are easily excited in FM
structures with a stripe shape as shown in Figure 3a. Here, an in-
put signal, such as current, changes the resistance of the device in
an analog manner as shown in Figure 3b, while the synapse also
shows plasticity. Thus, FM materials can act as hardware emulators
of synapses and store real-valued weights in a non-volatile manner.
During the training phase, the input data in the form of current flows
between the terminals T2 and T3 of the synapse shown in Figure 3a.
The synapse’s conductance is set by the magnitude and the duration

Time

Vo
lta
ge

Iin

m1m2 m3 T3

T1

T4

(a) (b)

T2

Figure 2: (a) Schematic of a spintronic AFM neuron where the
tunneling barrier is Magnesium Oxide (MgO) whereasm1,m2,
m3 represent characteristic parameters of the metallic AFM
considered here. Input current is applied between terminals
T2 and T3, while the output voltage is measured across termi-
nals T1 and T4. (b) A representative response of the AFM spik-
ing neuron over time due to applied constant input current
(Iin shown in (a)).

Figure 3: (a) Schematic of a spintronic synapse where the free
layer and the fixed layer aremade of ferromagnetic materials.
Input current is applied across terminals T2 and T3, while the
output voltage is measured across T1 and T3. (b) A representa-
tive response of the ferromagnetic synapse over time due to
applied input current.

of Iin. During inferencing, the output current between T1 and T3
terminals is sensed. The output current is given as the product of
the reading voltage applied across T1 and T3 and the memristor’s
conductance, which is set during the training phase. The memristors
can be electrically connected in an analog cross-bar architecture
such that the net current flowing through the bit line is given as
the weighted sum of the memristors’ conductance multiplied by the
input voltage (corresponding to the data being inferenced).

2.3 Parallel Discrete Event Simulation
Parallel Discrete Event Simulation (PDES) is an efficient method for
modeling the behavior of complex systems with discrete interactions
between many simulation entities and is a natural match for the
independent, discrete behaviors in spiking neural networks. Now, a
PDES simulation is made up of agents or entities known as Logical
Processes (LPs). These LPs are each mapped to the various cores or
Processing Elements (PEs) that may exist. In our simulation envi-
ronment, a single core or MPI process is home of one PE. Given a
constant simulation size with some number of LPs, the more PEs
we have, then, the fewer LPs will exist within each PE. Thus, the
responsibility for simulating the behavior of all LPs in the simulation
becomes more distributed as we increase the number of PEs.
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Effective parallelization does not come for free. When distributing
computation across multiple PEs, there needs to be some mechanism
in place for synchronization, ensuring that correct event ordering is
always maintained. In general, there are two approaches for address-
ing this synchronization problem. Conservative approaches [5, 11]
ensure that events are processed in timestamp order by waiting until
it is “safe” to process each event (i.e., no smaller timestamped events
will be received later). Optimistic approaches [23] allow events to be
processed out of order, but provide a mechanism to detect and erase
incorrect event computations. Loosely, each LP have their own clock.
The Global Virtual Time (GVT) is the minimum clock time across LP,
anything occurred before is considered to “have happened” and any
redundant information from that time can be forgotten.

For simulation models developed and used in this work, we lever-
age the Rensselaer Optimistic Simulation System (ROSS). ROSS is a
framework for developing parallel discrete event simulations. ROSS
has demonstrated highly scalable, massively parallel event processing
capability for both conservative and optimistic synchronization ap-
proaches [1, 2, 7, 28, 30, 32]. ROSS’ conservative execution is inspired
from the YAWNS protocol [33], utilizing a event creation lookahead
window restriction that ensures events cannot be created in a way
that causes out-of-order processing. ROSS’ optimistic execution is ac-
complished by implementing the Time Warp protocol [20–22] which
works with virtual time [23] for event time management. ROSS miti-
gates Time Warp state-saving overheads via reverse computation [8].
In this approach, rollback is realized by performing the inverse of the
individual operations that were executed in the event computation.
This eliminates the need to explicitly store prior LP state, leading to
much more efficient memory utilization.

Another useful feature of ROSS is its ability to deterministically
break ties between events that occur simultaneously [30]. This fea-
ture orders independent simultaneous events in an unbiased, arbi-
trary —but reproducible— order. We build on this feature in this work
to incorporate user-defined priorities to allow for certain events to
always be processed before others in the case of event simultaneity.
This is discussed in greater detail in Section 3.1.

3 DORYTA: SIMULATING SPIKING NEURAL
NETWORKS

Doryta 1 is an architecture-agnostic and deterministic Spiking Neural
Network simulator. Doryta is written in C as a ROSS model, and thus
can run in virtually any system with a C compiler and a compatible
MPI library. Doryta’s job is not to train a network for a task, i.e., no
neuron parameter is altered in the simulation of the network, instead
it is intended to be a reliable, deterministic and time-aware simulator
of SNNs.

Doryta differs from its inspirational predecessor, NeMo [37], in
several regards. First, NeMo was written in a combination of C, C++
and Lua which increases the complexity of development. Second,
NeMo was originally designed to simulate the TrueNorth [9] chip,
and generalizing it to any arbitrary architecture proved a difficult
task. In contrast, Doryta is written to be architecture agnostic, and
therefore more flexible and malleable to a larger array of SNN ar-
chitectures, such as recursive neuron connections. Lastly, loading
trained SNN models into NeMo involved a significant number of

1Doryta is an amalgam composed of the name “Dory” and the Spanish-origin suffix “ita”.
Dory comes from the movie “Finding Nemo” where a forgetful regal blue tang, called
Dory, finds herself accompanying a clownfish in an adventure to find his son, Nemo.
Doryta is the spiritual successor to NeMo, another SNN simulator built on ROSS. Doryta,
however, is simpler, more modular and flexible — which, we believe, is the essence of
Dory the fish.

steps and additional code per model, whereas Doryta can load mod-
els directly from disk given the correct binary format.

Doryta’s development is guided by several principles: modularity,
reproducibility, determinism, minimal use of third party libraries,
and the mantra “the LIF neuron is king”. Although modularity has its
shortcomings —it tends to produce less efficient code than a mono-
lithic implementation and a high degree of understanding is required
to glue all pieces together— we vouch for modularity to be center
stage as it has allowed us to extend Doryta’s capabilities with mini-
mal refactoring. Modularity also helped us detect bugs by making it
easier to unit-test the code in granular detail.

Built into Doryta is a set of tests which allow the developer to
check for the unintended injection of bugs or to verify that Doryta
compiles and runs as expected in a new machine or architecture.
Furthermore, because Doryta, by leveraging the ROSS PDES engine,
is deterministic, tests can quickly determine if what was intended to
be a minor change resulted in different the simulation output.

We hope that Doryta serves as a platform for other researchers
to play and experiment with. This is only possible if Doryta can be
compiled and executed without difficulty. Thus, we stand by our
decision to restrict Doryta’s development to the use of the minimum
number of C capabilities and libraries.

We prefer to lean on the LIF neuron model for its combination
of simplicity and capability. Although there are dozens of models
for the biological neurons and dozens more models implemented in
libraries, many of these neuron models, however complex, can be
boiled down to behavior similar to that of the LIF neuron, i.e., any
neuron can be modelled by the application of three simple rules: leak
rule, integrate rule and fire rule. We demonstrate the capabilities
and computational power of the LIF neuron model (and its Turing
completeness) in Section 4.1.

3.1 Implementation Details
Doryta is implemented as a ROSS model divided up into multiple
modules: driver LPs (neuron LP), layouts, model-loaders, and neuron
types. Here, we explain in detail each of the modules and related
concepts such as “Doryta modes”, event types and ∆t-step.

3.1.1 LPs and Events. Each LP in Doryta represents a single neu-
ron. Each neuron (LP) is composed of three variables: an ID, a list
of synapses (weighted connections to neurons), and, by default, a
pointer to the LIF neuron parameters (potential, capacitance, current,
resting and reset potential, and threshold). Further neuron models
can be implemented as C structs and be referenced by the LP in-
stead of LIF neurons.

In a continuous simulation, the set of rules that govern the be-
haviour of the system are applied every delta-time step (∆t-step)
of the simulation. This ∆t-step is model dependent and determines
the granularity of the simulation. The smaller the ∆t-step, the more
precise the simulation, at the cost of a larger computational time.
Given the nature of PDES, this ∆t-step in Doryta has to be explicitly
encoded as an event. We call this event a heartbeat event.

In the LIF neuron model there are three rules: leak, integrate and
fire. Notice that on one hand, in a continuous simulation, all three
rules should be executed every ∆t-step, but this is not the case in DES
where “integration” only occurs when a spike arrives to a neuron
and in no other case. On the other hand, leak and fire occur only
once even when more than one spike arrives at the neuron within
two heartbeats. These two cases are executed by two distinct events:

• Heartbeat event: It applies the rules: leak and fire, in that
order. It is scheduled every ∆t-step. It is received, processed
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and sent by each neuron. There is at most one heartbeat event
per neuron at any given point.

• Spike event: It applies the integration rule (aka, summation)
to the neuron, i.e., for the LIF neuron, the spike’s current is
added up to the input current I (t) at time t . It can be sched-
uled at any point in time. Spike events can be created in two
ways: loaded when the simulation initializes or created by a
neuron. There can be as many spikes per neuron as synapses
it connects to.

Under optimistic execution, a PE might need to rollback some
events in order to keep in sync with all the other PEs. To allow
rollbacks, we save the neuron’s state before modifying it.

Due to the possibility that two or more events could occur with the
same timestamp (an event tie), we lean on the tie-breaking feature
of ROSS [30] to maintain simulation determinism and validity. This,
however, will also guarantee that the order of any two independent,
simultaneous events is explicitly randomized. In most cases for Do-
ryta, this is acceptable; however, we would like for heartbeat events
to always be processed before spike events, should they occur at the
same time. This use case is an example of user-defined event priorities.

To accomplish this, we extended the tie-breaking data structure of
ROSS which enforces lexicographic ordering of events based on the
values of the items within the structure. Before, ROSS would compare
two events based on their regular timestamp; if there was a tie, then
it would compare the two based off of their uniquely generated, i.i.d
uniform random tie-breaking values.

To implement the user-defined priorities needed for our simulation
models, we insert into the structure another value after the regular
timestamp but before the random tie-breaker value. This value is
defined at event creation depending on the event type; heartbeat
events get a higher priority value, spike events get a lower priority
value. This allows for the order of simultaneous Doryta events to
remain in an unbiased arbitrary order except in the case of comparing
a heartbeat and a spike event. In that case, then the heartbeat event
will always be processed first.

3.1.2 Modes. Unless a neuron receives a spike it will not fire. This
is true only when we can guarantee that the neuron does not have
positive leak, which would provoke neurons to fire with no input
spikes. Therefore, without positive leak, there is no reason to schedule
a heartbeat event for every single ∆t-step. We can leverage this fact
and run simulations in one of two modes:

• Needymode:Aheartbeat event is scheduled every∆t-step re-
gardless of neuron input, creating potentially needless events.

• Spike-driven mode: A heartbeat event is scheduled only
after a spike is received, preventing the creation of heartbeat
events when they aren’t needed.

To make simulations on both modes semantically the same, two
constraints should always be maintained: heartbeats must always
be scheduled at the same timestamps whether they are scheduled
by another heartbeat or triggered by a spike, and applying the leak
operation consecutively for n ∆t-steps must yield (approximately)
the same as computing the analytical solution of the leak operation
over that same time interval (big-leak operation).

As an example, let us assume a ∆t-step of 1.0. In needy mode, the
first heartbeat would be allocated to time 0.0, and once it is processed,
it would allocate the next heartbeat to time 1.0, then to 2.0, and so
on. In spike-driven mode, no heartbeat would be allocated to time
0.0 and instead if a spike arrives at time t then a big-leak operation
would update the state of the neuron followed by the allocation of
a heartbeat for time ⌊t⌋ + 1. No matter when a spike is received

Time
Input
Spikes

Output
Spikes

Figure 4: Heartbeat scheduling for needy (solid blue hearts)
compared to spike-driven (dotted green hearts) modes.

or for how long the simulation runs, we can ensure that with a ∆t-
step of 1.0 both simulations will produce the same output spikes.
That being said for other ∆t-step values like 0.1, although entirely
reasonable, one cannot guarantee the same output spikes due to
floating-point arithmetic limitations. The important takeaway here
is that applying the leak operation iteratively must produce the same
result as applying the big-leak operation once and to do that, careful
choice of floating-point ∆t-steps is crucial, see Figure 4.

3.1.3 Delta-time step and Leak operation. In needy mode, the next
heartbeat event is scheduled a ∆t-step from whenever the previous
heartbeat event is processed. In spike-driven mode, heartbeat events
are not scheduled by heartbeat events but by spike events. When a
spike arrives, it schedules a heartbeat event (unless already scheduled)
for the time:

theartbeat =

(⌊
tspike
∆t

⌋
+ 1

)
× ∆t (5)

This equation is sufficient for replicating the behavior of needy
mode simulations in spike-driven mode; however, the nature of
floating-point number arithmetic could shift the heartbeat times-
tamps slightly between both modes. We recommend using ∆t-steps
equal to a power of 2 as that is more resistant to floating-point preci-
sion errors.

The leak operation (see Equation 3) is a discretization of the differ-
ential equation for the neuron behaviour (see Equation 1). As noted
before, when no spikes arrive to the neuron, there is no need to
update the state of the neuron. It is possible to determine the state of
the neuron if the input current (I (t)) is zero (or constant) over any
period of time, which means that we can compute the new state at
once instead of needlessly applying the leak rule many times. This
new computation is called the big-leak operation and it is equal to:

V (t) = Ve + e
−t
τ × (Vi −Ve ) (6)

where t is the time elapsed since the state of the neuron was last
computed.

All of Doryta’s capabilities described until now are encapsulated
under two modules: the neuron driver module and the neuron model
module. The driver module can be configured through a single func-
tion that accepts one argument, a pointer to a struct. Through this
struct, each PE loads the parameters for all neurons and their in-
put spikes. The model module contains the leak, integrate and fire
operations for all neuron models.

Lastly, Doryta contains two additional modules: layouts andmodel-
loaders. The former determines how neurons are mapped into PEs
and how they are connected to each other. The latter defines several
hardwired models and a mechanism to load from disk.

3.1.4 LP Mapping and Layouts. Neurons are assigned in groups to
each PE. In Doryta, a batch of neurons is reserved to a range of
PEs. There can be as many batches as necessary for any simulation.
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Figure 5: Mapping configurations. Top: A single fully con-
nected network with 28 neurons. Bottom: 3-layer SNN with
dimensions [5 10 16 2] (input 5, output 2).

Figure 5 shows two different mappings using the same number of
neurons.

On top of the neuron mapping, we have the connections between
neurons, the synapses. There are two kinds of connections defined
in Doryta currently: ‘all-to-all’ connections and 2D convolutional
connections. An all-to-all connection is defined from a range of
output neurons to a range of receiving neurons. The total number of
synapses in a all-to-all connection is equal to the number of output
neurons times the number of receiving neurons. One possible SNN
that can be built out of these components is a simple fully connected
layer (see an example in Section 4.2). A 2D convolutional connection
is also defined between a range of output neurons and receiving
neurons, but it also requires the input image width, the parameters
of the kernel (width and height), and the padding and striding of
the kernel, both horizontally and vertically. The total number of
synapses for the convolutional connection is at most Kw × Kh × Nr
where Nr is the total number of receiving neurons, and Kw and
Kh are the width and height of the kernel. Note that the number
of connections/synapses for a convolutional connection are much
smaller than for an all-to-all connection.

Contrary to the general consensus on 2D convolutions, which
determines that a convolutional layer takes a layer/image with mul-
tiple channels/colors and outputs a layer with multiple channels,
Doryta’s convolutions take images and output images with only one
channel. The more general, multi-channel convolutions can be im-
plemented as the accumulation of multiple single-channel, Doryta’s
convolutions.

All-to-all and convolutional connections are pervasive in ANN
applications because of their simplicity and geometric characteristics.
In Section 4.1, we show how to construct a grid for Conway’s Game
of Life made out of four convolutional connections.

3.2 Physical Performance Estimation at the
Hardware Level

The performance estimation is accomplished hierarchically by first
computing the performance of basic neurons, synapses, and inter-
connects and projecting them to the core and the chip levels for the
neural networks implemented here (see Section 5.2). Note the chip
is composed of several cores. Here, we report the methodology and
performance metrics for neuronal spiking, synaptic integration, and
data communication via metal interconnects.

3.2.1 Antiferromagnetic Neurons. We consider spiking neurons im-
plemented using two different types of AFM materials: Mn3Ir (metal-
lic) and NiO (insulating). These AFM neurons generate a spike with
an auto-reset when triggered with a current pulse that exceeds a

Table 1: Performancemetrics of AFMneurons. Theminimum
feature size F = 15 nm. These metrics are obtained for 10%
overdrive of input current compared to the threshold input
current.

Value

Performance metric
NiO
(insulator)

Mn3Ir
(metal)

Input electric current density 2 × 107 A/cm2 2 × 109 A/cm2

Input voltage 1 V 0.15 V
Fundamental spiking frequency 20 GHz 435 GHz
Output spike voltage 0.232 mV 2.1 mV
Latency 50 ps 2.3 ps
Power dissipation 0.3 mW 0.68 mW
Energy dissipation 1.5 × 10−14 J 1.55×10−15 J
Area 20F 2 20F 2

threshold value, which depends on the material parameters and di-
mensions of the neuron. For a typical 5-nm thick NiO-based neuron,
the critical electric current density to excite the neuronal dynamics
is typically 1.83 × 107 A/cm2 [36]. The fundamental frequency of
spiking in AFM neuron depends on the current overdrive, i.e., the
difference between the input electric current and critical current.
Assuming the overdrive to be 10% for NiO neuron, we find that it
spikes with a fundamental frequency of 20 GHz. For typical material
parameters, the energy consumed for a spiking event in a 100 nm
× 15 nm NiO-based neuron is around 1.5 × 10−14 Joules. As for a
5-nm thick Mn3Ir-based neuron, the critical electric current density
is 5.5×109 A/cm2, while its fundamental spiking frequency is around
150 GHz [40]. The higher critical current for the latter case is due to
the higher intrinsic damping present in metals as compared to insu-
lators. Assuming a 10% overdrive in input current and 100 nm × 15
nm cross-section of Mn3Ir neuron, we estimate its energy dissipation
to be 4.5×10−15 Joules. Despite the high current density to excite
spiking dynamics in Mn3Ir neuron, its energy dissipation is lower
than that of NiO neuron due to the lower input voltage requirement
and faster dynamics in Mn3Ir.

For comparison, a digital CMOS neuron consisting of two 8-bit
registers, an 8-bit adder, 8 NAND gates, 8 inverters, and three 8-state
elements, occupies 110 µm2 area for 15-nm technology node [34]. The
energy consumption per spike for the digital CMOS neuron is 136 aJ,
while its operating frequency is 1.58 GHz. The analog CMOS neuron
is based on an analog-to-digital converter read circuitry composed
of 32 CMOS inverter cells and a synapse, which occupies 0.69 µm2

cross-sectional area [34, 35]. The energy consumption of the analog
CMOS neuron is ≈ 140 aJ and its operating frequency is ≈ 503 MHz.

3.2.2 Ferromagnetic Synapses. In the case of the memristive domain
wall-based FM synapses considered here, a 320 nm × 15 nm device
can host up to 64 distinct resistance levels [38]. Ignoring any effects
of device-level non-ideality, as shown in Table 2, the conductance
ranges from 1.2 × 10−4 Ω−1 to 2.67 × 10−4 Ω−1. In order to fire a
neuron when the synapse’s output is at the maximum level, the read
voltage of the synapse is set to 1.125V and the latency of the read
process is estimated as 0.27 ps. A reset pulse is applied following
the reading pulse, and averaged energy consumption per synaptic
operation is estimated to be around 0.081 aJ. By comparison, a digital
CMOS synapse, consisting of an 8-bit SRAM register and a state
element, consumes ≈ 170 aJ energy, while its latency is 0.64 ps [34].
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Table 2: Metrics of the DW-based ferromagnetic synapse.

Parameter Value
Conductance range (10−4 Ω−1) 1.2–2.67
Sensing current (milli-Amps) 0.18
Pulse width of current (picoseconds) 0.54
No. of conductance states 64
Energy dissipation (atto-Joules) 0.081

The footprint of the digital synapse is estimated as 1.38 µm2. For an
analog CMOS synapse, comprising two operational transconductance
amplifiers, the energy consumption is ≈ 2 aJ, latency is 19 ps, while
its area is 0.17 µm2 [34, 35].

3.2.3 Interconnects. The aforementioned neurons and synapses are
interconnected to each other via Cu/low-κ technology. The energy
of these interconnect can be evaluated as

Eic = Cl lV
2, (7)

where Cl is the per-unit-length interconnect capacitance, l is the
interconnect length, and V is the supply voltage which for Mn3Ir
neuron is 0.25 V while for NiO neuron is 0.87 V. For long, chip-level
interconnects (> 0.1 mm), Cl = Cl, long = 5 × 10−10 F/m, while
for short interconnects with synapses (< 0.1 mm), Cl = Cl,short =
9.23 × 10−11 F/m. We model the interconnect length for neurons,
lic,neu, and that for synapses, lic,syn, according to

lic,syn =
√
asynscore,

lic,neu =
√
acoreclayer, (8)

where asyn (acore) is the synapse (core) area, score is the number of
synapses per core, and clayer is the number of cores per layer.

At the core level, the RC-delay dominates the total delay of the
interconnects. Thus, we consider it as part of the synapse delay and
evaluate it as

τsyn, ic = (0.38RicCl,short + ReffCl,short + RicCload)lic,syn, (9)

where Ric = 1.1×109Ω /mΩ is the interconnect resistance per-unit-
length; and,Reff = 6.075× 103Ω is the effective resistance of a synapse,
and Cload = 2.17× 10−16 C is the capacitance of the synapse.

At the chip level, the interconnect delay is associated with the
neuron operations and is thus evaluated as

τneu, ic =
Cl, longlic,neuVneu

Ineu
, (10)

where Ineu is the input current of the neuron, andVneu is the neuron
voltage. Ineu = Jneuaneu, where Jneu is the neuron’s input current
density, while aneu is the neuron’s cross-sectional area. Table 1 lists
the values of Jneu and Vneu for both Mn3Ir and NiO neurons.

3.2.4 Chip-level benchmark. Instead of thoroughly designing each
part of the chip, we introduce empirical factors to approximate the
area associated with peripherals and to accommodate the design
rules for component spacing. All cores in our work are connected
using a crossbar architecture. The core area is given as

acore = (aneuncoreFneu + asynninnoutFsyn)Fcore, (11)
where Fsyn = 3, Fneu = 3 and Fcore = 2 represent the empirical area
factor for synapses, neurons and cores, respectively, and nin (nout) is
the number of input (output) neurons for the core.

In case the number of input neurons is smaller than the synapses
per neuron, the core area is estimated using the convolution core

architecture [34]. Replacing the input neuron numbers by the synapse
numbers per neuron, we obtain

acore = (aneuncoreFneu + asynsneunoutFsyn)Fcore (12)
The fan-in of AFM neurons is considered to be infinite because the

input current sums up in the interconnects naturally. All the cores in
the same layer operate simultaneously and each core operation delay
is determined by one synaptic operation and one neuron operation.
The delay per core is given as

τcore = τneu + τsyn + τneu, ic + τsyn, ic. (13)
The energy consumption per core is the summation of energy

dissipated in all the synapses and neurons. The energy consumption
of a core is workload-dependent because both the active synapse rate
and the neuron fire rate depend on the workload-related parameters
presented to the neurons and synapses. The active synapses per
neuron and the active neurons per inference (per core) are

sact,neu = sneusact, (14)
nact,core = ncorenact, (15)

where sact and nact are the ratio of active synapses and neurons per
layer, respectively.

Adding all up, the energy consumption per core is
Ecore = Esynsact,neuncore + Eneunact,core. (16)

At the chip level, the area and energy consumption are the sum-
mation of all cores:

achip =
∑
i

∑
j
acore,i j , (17)

Echip =
∑
i

∑
j
Ecore,i j , (18)

where i is the layer index, while j is the core index in a specific layer.
It is worth noting that all cores of the same layer operate in parallel
and thus the chip latency is given as

τchip =
∑
i
maxlayer,i (τcore, j ). (19)

4 NEUROMORPHIC APPLICATIONS
We present two outstanding applications to SNNs. First we show
how to simulate Conway’s Game of Life, and, in doing so, show that
SNNs are Turing complete. Secondly, we tackle a classic machine
learning problem: image classification.

4.1 Conway’s Game of Life and Turing
Completeness

Conway’s Game of Life [15] (GoL) is an extensively studied cellular
automata, a fascinating mathematical construction built out of a grid
of cells and a list of rules that determine how the state of the cells
change in time. Each cell in the grid is in one of two states: dead or
alive, and each cell has eight neighbours. If the grid has a border,
then some cells will have less than 8 neighbours. The rules of GoL are
simple: a cell stays alive if there are two (2) or three (3) neighbouring
cells alive, otherwise it dies; and, a cell comes to life if it has exactly
three (3) alive neighbours, otherwise it stays dead.

As noted by [41], it is possible to encode the rules of GoL, and
thus simulate GoL, as a multi-layered Neural Network. In Figure 6,
we show a 2-layer NN which simulates one step of GoL using as
activation function the step function centered on 0.5. Notice that
the shape of the network’s output (the third layer) is the same as its
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Figure 6: Conway’s Game of Life as a 2-layer convolutional
Neural Network. The first layer has a padding of 1 and a ker-
nel with two filters (Life Kernel and Kill Kernel). The second
layer has no padding and a kernel of 1 × 1, two input chan-
nels and one filter (the Board Kernel). A neuron fires (in grey)
when its summation (plus bias) surpasses 0, i.e., the activation
function for both layers is the step function centered on 0.5.

input. This allows us to connect the output of the last layer as input
to the first layer, thus building a recurrent network.

The first convolution is composed of a kernel of size 3× 3 and two
filters. We can analyze this kernel by breaking it up into two pieces,
one per filter. The first 3 × 3 kernel corresponds to the Life kernel,
which when applied counts the number of cells alive on groups of 9
cells at the time. The bias for the Life kernel (−2) is added up to these
counts resulting in the Life number. It can be seen in Figure 6 that
the Life number for the uppermost-rightmost quadrant in the input
state is equal to 1 (in red). Note that all numbers are natural numbers.
If the Life number is bigger than zero, this means that either the
neuron was dead and at least three neighbours are alive or it is alive
and at least two neighbors are alive; in either, case the neuron output
should be 1 (the neuron fires and a spike is sent). The second 3 × 3
kernel corresponds to the Kill kernel, which when applied counts
the number of cells alive around a cell. The bias for the Kill kernel
(−3) is added up to this count resulting in the Kill number. If the Kill
number is bigger than zero, this means that the number of cells alive
around a central cell is bigger than 4, which is not a good outcome for
the central cell as it cannot be alive with that number of neighbors
regardless of its current state (dead or alive).

In Figure 6, the Kill number for the cell centered in the uppermost-
rightmost quadrant is 0 (in blue). The two “images” resulting from the
application of the first convolution (Life and Kill images) are binary,
containing either 1s and 0s, or spikes and no-spikes, and they tell us
which cells have a chance to be alive, and which must be stopped and
killed (respectively). The second convolution (between the second
and third layers) is in charge of determining the “life” status of each
cell given the output from the Life and Kill images. The Board kernel
distinguishes the input from the Life image or Kill image. All values
in the Life image are multiplied by 1 and all values in the Kill kernel
are multiplied by −1. The two resulting values, per cell, are added up,
giving us the Board number. If the Board number is zero, then the

Table 3: Crossbar configurations for: (a) Conway’s Game of
Life (layer 1 receives spikes from layers 2, 3 and the initial
input); (b) LeNet as crossbar connection. Boxes indicate cross-
bar units; lines represent connections between units and in-
put/output.

(a)

Layer Input
Lines

Number of
Neurons

Synapses per
Neuron

Board 1200 400 3
Life 400 400 8.41
Kill 400 400 8.41

(b)

# Type Input
Lines Filters Number of

Neurons
Synapses per

Neuron
1 Conv 784 1 784 1
2 Conv 784 6 784 22.90
3 Conv 784 6 196 4
4 Conv 1176 16 100 150
5 Conv 100 16 25 4
6 Full 400 - 120 400
7 Full 120 - 84 120
8 Full 84 - 100 84

cell is dead, but if it is one, then it is alive. In Figure 6, the green box
on the next state image shows the result of adding up 1 · 1 and 0 · −1.

A cell in GoL using the 2-layer NN strategy from above can be
represented by three neurons, one for the Board kernel and two for
the Life and Kill kernels. The simulation takes two clock cycles to
simulate one time step of GoL. In the first clock cycle, the input state
is sent as spikes from the first to the second layer following the Life
and Kill kernel weights and the neurons fire if the conditions apply.
In the second clock cycle, the neurons that fired on the previous cycle
send a spike to the first layer where it is determined whether the cell
is alive or dead.

The neuron parameters for GoL are: Ve , Vr eset of 0, C of 0.5, R
of 1 and threshold equal to 0.5 − biasi , where biasi is the bias for
the neuron i in one of the three possible neuron groups: Board, Life
or Kill. The synapses’ weights are: 0 if the neuron being connected
corresponds to the same cell and the kernel is Kill, −1 if the synapse
connects from the group of Kill neurons to the Board neurons, and 1
in any other case. See Table 3a for GoL’s crossbar configuration for
a grid of size 20 × 20. The number of input lines for the Board layer
is three times that of the size of the grid because it collects the result
of the Life and Kill layers as well as the initial state input.

A natural corollary result from simulating GoL as a SNN is that:
SNNs are Turing-complete given that GoL has already been shown
to be Turing-complete [3]. Thus, we have shown that the require-
ments for SNN Turing-completeness are at most: two neuron pa-
rameters (threshold and leak), one synaptic parameter (weight) and
recurrent connections. Furthermore, it is possible to modify the 2-
layer convolutional NN to make use of only non-negative numbers,
which makes it possible to set a fixed threshold for all neurons getting
rid off one neuron parameter, leaving us with only three requirements
for Turing-Completeness. Similar work [13] made use of the equiva-
lence between µ-recursive functions and Turing Machines to prove
that SSNs are Turing-complete. We consider our GoL 2-layer NN to
be much a simpler and understandable proof of Turing-completeness
for SNNs.
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4.2 MNIST Classification
MNIST [27] is a classical Machine Learning dataset consisting of
70, 000 grayscale images, each consisting of 28 × 28-pixels and con-
taining one handwritten digit. This dataset is commonly used to
test the ability of new Machine Learning models to classify, and it
also works as a bench test to showcase new hardware architectures
without the insane requirements of state of the art ANNs.

A simple and popular feed forward network architecture used for
image classification on MNIST is LeNet [26]. LeNet can be imple-
mented in virtually any neural network framework, including Doryta
and Whetstone [39]. Whetstone is written in Python to train ANNs
with some restrictions. An ANN model trained with Whetstone can
be encoded into memoryless SNNs little modification. Whetstone’s
trick is to define an activation function that approximates the step
function to act as a threshold in SNNs. We follow the same crossbar
structure as proposed by [34]. See Table 3b for the crossbar parame-
ters of LeNet. The number of classes in MNIST is only 10, not 100,
but the output of our network is 10 times larger because Whetstone
requires redundant neurons to properly classify an image.

Because models trained in Whetstone use simpler, “memoryless”
neurons, we have to decide on the parameters for the spiking neurons
should take. The spiking neuron parameters we have selected are:
Ve andVr eset of 0,C of 1/256, R of 1 and theVth (threshold) is equal
to the bias of the neuron (plus 0.5 as per details of Whetstone’s
implementation). The synapses’ weights are in the same manner
equal to the weights obtained from Whetstone training.

4.2.1 Validating Doryta against Whetstone. After training LeNet in
Whetstone, we saved it into a binary file readable by Doryta. The net-
work was loaded in Doryta and then fed 10, 000 test images. LeNet’s
output in Doryta was compared spike per spike against Whetstone’s
output. No differences in the output of both Doryta and Whetstone
were found. This is remarkable as both Doryta and Whetstone are
written in separate languages with completely different underlying
libraries. In simulation speed, however, Whetstone takes seconds to
infer the class of all 10, 000 the images while Doryta takes a couple
of minutes. This discrepancy is due to Doryta’s nature of simulating
individual neurons that forget at an exponential rate, while Whet-
stone treats each neuron as a summation box of input spikes with no
memory of past events. We expect that once transferred to hardware,
memoryfull neurons will operate independently and in parallel of
each other at much higher rates than what Doryta can simulate. As
we show in Section 5.2, inferencing a single image requires only 8
clock cycles (one clock cycle per layer) which in spintronic hardware
could take up to only a couple of microseconds.

The trained neuron models, Doryta, and the Python scripts used
to verify the equivalence of outputs between Doryta and Whetstone
can be found on the supplementary material and code accompanying
this paper.

5 EXPERIMENTAL RESULTS
Two sets of experiments were run: performance experiments using
GoL for benchmarking, and energy estimation experiments for in-
ference of MNIST images. All experiments in this work were run on
up to 32 compute nodes on RPI’s AiMOS supercomputer [10]. Each
node of AiMOS is composed of two 20-core IBM Power 9 processors
clocked at 3.15GHz and 512GiB of RAM.

For simulations performed in this work, Doryta was compiled
using IBM’s XLC_r and the Spectrum MPI library.

5.1 Performance Experiments - Strong Scaling
As seen in Table 4, using a single compute node with up to 40 proces-
sors, we ran a Game of Life simulation of size 1000 × 1000, starting
with a random initial state where each cell had a probability of 20%
of being alive, for a total of 1000 GoL steps. A total of 3, 000, 000 LPs
are required for the simulation (3 neurons per cell) and 1.75 × 109
events were processed. Because of Doryta’s determinism, every sin-
gle run utilized the same number of net events to work. We found
that ROSS’s conservative mode produced the best scaling results,
showing an almost linear speedup. Efficiency (for Optimistic and
Optimistic Realtime modes) refers to 1− erollback

enet , where erollback is the
number of events rolled back and enet is the number of net events,
events processed. Efficiency is a measure shown in practice to be
closely correlated to runtime. Note that even with near 100% effi-
ciency in the simulations with Optimistic and Optimistic Realtime
modes, the Conservative execution runs much faster. On a subse-
quent experiment, we ran the same simulations on up to 32 compute
nodes, see Table 5. As one would expect, increasing the number of
cores increases the number of remote events, events that have to be
sent through the network to a different PE/core.

Notice that other network configurations like a fully connected
layer might not scale. The GoL configuration is special and it scales
well because the number of connections each neuron has is small
(to its neighbours and itself, 9 at most). That is the advantage of
2D convolutional connections as opposed to all-to-all connections;
convolutional connections are sparse while all-to-all connections are
not. For future work, we have planned to optimize “spike broadcast”
as to make these all-to-all connections as efficient and scalable as
convolutional connections.

5.2 Hardware Performance Estimation
Following Nikonov and Young’s energy estimation strategy [34],
we defined a crossbar architecture for the task of digit recognition
on MNIST. Then, given a spike workload, we calculated the area,
latency and energy of the crossbar architecture for the classification
of a single image. In their framework, Nikonov and Young assume
an approximate layout for each component of the architecture in
the chip, an approximate placement for each neuron, synapse and
interconnect in each crossbar. Our crossbar architectures, like theirs,
follow the LeNet architecture, as presented in Table 3b (ours only
differing on the size of the last layer). For a more accurate perfor-
mance estimation, we simulate the network in Doryta and gather
the usage of each component (leak, fire and integrate) to create a
specific workload for LeNet using MNIST and Fashion-MNIST. The
performance estimation process takes all equations from Section 3.2
and computes them given the workloads produced by Doryta. This
process was automated in a Python script which can be found as
supplementary material.

All workload were obtained fromDoryta’s output. First the trained
LeNet model on MNIST (or Fashion-MNIST) was loaded into Doryta,
as explained in Section 4.2, and then a total of 10, 000 test 28 × 28
black and white images as spikes were injected into the simulation.
From processing these images, Doryta calculated the usage of key
operations (fire, integrate and leak) for each layer of the network. The
first workload was based on the LeNet model with the MNIST dataset,
we nicknamed it the “Small LeNet” (SL) workload (see Table 6). The
second workload was constructed by training LeNet on the Fashion-
MNIST dataset [44], which is a dataset made to be a “hot swapping”
replacement of MNIST where each image belongs to one of ten
categories of clothing (the “Small LeNet Fashion” (SLF) workload).
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Table 4: Strong scaling for a simulation of GoL. Randomly initialized GoL grid with size of 1000 × 1000. Sequential execution
time of 4746.01 s. Conservative mode execution with lookahead of 0.01. Optimistic mode execution with default values (GVT
of 16 and batch size of 16). Optimistic realtime mode with parameters: GVT enforced every 1ms and a batch of 4.

Conservative Optimistic Optimistic Realtime
Cores Runtime (sec) Speedup Runtime (sec) Efficiency Speedup Runtime (sec) Efficiency Speedup
2 2962.78 1.60 4240.68 97.80% 1.12 3425.19 96.37% 1.39
4 1415.07 3.35 2743.21 95.79% 1.73 1761.16 90.94% 2.69
8 669.00 7.09 1786.44 97.01% 2.66 855.71 92.67% 5.55
16 328.31 14.46 1068.36 98.16% 4.44 419.97 95.21% 11.30
32 166.54 28.50 609.60 98.83% 7.79 207.87 97.22% 22.83
40 136.37 34.80 536.67 98.89% 8.84 171.01 97.39% 27.75

Table 5: Strong scaling on multiple nodes for a simulation of
GoL using conservative mode in ROSS. Randomly initialized
GoL grid with size of 1000× 1000. Sequential execution time of
4746.01 s.

Nodes Total
Cores

Runtime
(sec)

Remote
Events Speedup

2 80 68.95 3.32% 68.83
4 160 36.76 6.66% 129.10
8 320 21.31 13.34% 222.75
16 640 14.33 26.65% 331.28
32 1280 10.82 41.66% 438.65

Table 6: Average total number of integration and fire opera-
tions utilized on the inference of a black&white, 28×28 image
from MNIST and Fashion-MNIST datasets. Accuracy of each
network on their respective dataset: Small and Large LeNet
on MNIST and Fashion-MNIST.

Workload Integration Fire Accuracy
Small LeNet 73734.32 733.94 96.36%

Small LeNet Fashion 104355.98 1180.18 67.12%
Large LeNet 296092.07 965.04 98.14%

Large LeNet Fashion 752321.71 2612.02 70.06%

To improve accuracy, we increased the number of filters for the four
intermediate layers of LeNet from 6 and 16, to 32 and 48, respectively.
We found a 2% improvement in accuracy with this larger network
on MNIST (see Table 6, “Large LeNet” (LL)), and a 3% improvement
on Fashion-MNIST (“Large LeNet Fashion”).

Table 7 shows the estimation of the performance per inference
with the four different workloads. The energy consumption is com-
posed of four different parts, as illustrated in Figure 7a: neurons,
synapses, interconnects connected to the synapses and intercon-
nects connected to the neurons. The energy of neuron firing is neg-
ligible, while the energy consumed in interconnects, especially the
short interconnects with synapses, is dominant. This helps explain
why compared with Mn3Ir-based network, the NiO-based network
consumes more energy despite the energy efficiency of the neuron
spiking. Benchmarks corresponding to analog and digital CMOS
neural networks are also included as a comparison. Notice in Ta-
ble 7 the significantly superior performance of spintronics-based
neural networks compared with their CMOS counterparts. The AFM
neural networks are promising to operate in ∼GHz range, while
CMOS-based networks typically work in ∼MHz frequency range.
Energy consumed by analog CMOS devices is 3× higher than that

of AFM devices, while the energy consumption of digital CMOS
implementation is 10× that of analog CMOS implementation. We
also report the compound metric energy-delay product (EDP) for
both spintronics-based and CMOS-based networks, and we find that
spintronics neural networks offer two orders of magnitude lower
EDP compared to CMOS neural networks.

As an additional point, we would like to compare the spintronics
performance to that of TrueNorth. According to Cheng et al. [12],
TrueNorth could inference images from the MNIST dataset at a rate
of 1249 frames per second with an energy performance of 6122.44
frames per second per watt. Given that 1 watt equals 1 J/s, 6122.44
frames/s/W is the same as 6122.44 frames/J or 163.334 µJ/frame
(163, 334 nJ/frame). Note that their network architecture is based
on CIFAR, a larger dataset than MNIST. TrueNorth is capable of
crossbar connections of 256 input lines and 256 neurons only. We
approximate that LLF would fit in at least 1400 TrueNorth cores. To
balance out the specific architecture differences between Cheng et
al. CIFAR-classifying networks and our MNIST networks, we divide
their 163, 334 nJ/frame by a factor of 3, which is nearly a 1000×more
energy per frame than our AFM design. This factor is the result of
dividing the number of cores/crossbar units utilized by Cheng et al.,
4064, by the estimated number of 1400 cores for our largest network
(LLF). Our estimation for Digital CMOS (4574) is one order of mag-
nitude away from Cheng et al. 54, 444 nJ/frame. This discrepancy
can be explained by the cost associated with peripheral circuitry
and transducers or amplifiers that will be needed, which we do not
account for in our calculations.

Figure 7b shows the energy dissipated in each layer, which is
dependent on workload allocation. The SLF workload has approxi-
mately 40% more integration and firing operations but the energy
consumption is similar to the SL workload. Also, the LLF’s integra-
tion and firing are 2.5 times that of LL’s but less than twice that of
energy consumption. The fourth and sixth layer are dominant in
energy consumption and the ’Fashion’ workload does not consume
much more in these two layers so they are more energy efficient.

As mentioned in Equation 13, the latency of each layer is the col-
laborative contribution of one synaptic operation and one neuron
operation and it is dominated by the number of layers and inter-
connect delay per core. The area of each layer, dominated at the
chip-level by the interconnect, is the largest contribution to the de-
lay difference between different workloads implemented using the
same neuron device. Figure 7d shows the latency of processing single
layers. Note that the only the network size, the number of cores
and their size, influence the latency of each layer. There is no differ-
ence latency-wise between workloads running on the same network
architecture (e.g., no difference in latency between SL and SLF).
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Table 7: Performance of various technologies on different
workloads. Note that the iso-latency power dissipation of var-
ious networks will be directly proportional to their energy
consumption and is therefore not reported specifically in the
table.

Neuron Workload Area
(mm2)

Latency
(ps)

Energy
(nJ)

E· τ
(10−18s· J)

Mn3Ir

SL 0.045 56 8 0.5
SLF 0.045 56 7 0.4
LL 0.259 77 123 10
LLF 0.259 77 205 16

NiO

SL 0.045 647 8 5.4
SLF 0.045 647 7 4.7
LL 0.259 948 124 117
LLF 0.259 948 206 195

Analog
CMOS

SL 1.7 18594 28 523
SLF 1.7 18594 25 460
LL 9.7 21864 399 8716
LLF 9.7 21864 666 14560

Digital
CMOS

SL 16 42380 263 11125
SLF 16 42380 239 10123
LL 88 80929 2626 212547
LLF 88 80929 4574 370202
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Figure 7: (a) Energy consumed by different components. ‘neu-
ic’ (‘syn-ic’) is chip-level (core-level) interconnect. (b) Energy
consumption reported layer by layer. (c) Latency of devices
and interconnects. (d) Latency of each layer.

Figure 7c shows the latency of each components of the network.
The neuron and neuron-connected interconnect latency are domi-
nant while the synapse latency is negligible. The synapse-connected
interconnect latency is similar for all neuron types and workloads.
The interconnect plays a significant role in both the energy consump-
tion and the latency computation, so much in fact that it has become
a bottleneck of further reduction in dissipation and latency.

Even though the performance results for spintronic neural net-
works are exciting, the spintronic devices have some limitations
compared to ideal LIF neurons. First, the weights that synapses store
can only be non-negative. We found that enforcing non-negative

constraints on the synapses weights resulted in trickier to train SNN
models, yet, once trained, the workloads were not substantially dif-
ferent from those that we used. Secondly, neuron leak and threshold
cannot be tweaked as they are values intrinsic to the materials. For-
tunately, when only considering positive weights for synapses, the
neuron threshold can be fixed, so that the synapses weights need
only to be scaled accordingly to fit the fixed threshold. Lastly, the
spintronic synapses have about 64 different levels (6 bits), which—
compared to the SNNs trained for this work—is a fraction of what
single floating-point numbers can store. We found that restricting
the network to 8 bits unsigned values did not affect accuracy by
more than half a percent, but when restricting the network to 6
bits there was significant reductions in accuracy. However, 4 bits
have been shown to be enough for NNs to learn [42]. Thus, with the
right technique to discretize the network, 6 bits could behave as 8
bits, i.e., our workloads are a good enough approximation of what
the architecture would encounter when constrained to 6 bits. This
is without taking into account different input image encoding. We
found positive improvements on accuracy (up to 10%) when spikes
are temporally encoded.

6 CONCLUSION
We have presented Doryta, a parallel discrete-event-based, chip-
agnostic simulator for neuromorphic applications applied to the
energy estimation of novel spintronic-based devices. Due to its mod-
ular design and mapping strategy, we’ve observed that Doryta can
be scaled up to well over 1,000 of CPU cores. Additionally, Doryta
is able to reproduce the inference results of another spiking-neural
network library, Whetstone, with one key advantage: it takes into ac-
count time information and delays. We showed that Turing-complete
requirements for neuromorphic computing are at most: one neuron
parameter (leak), one synaptic parameter (weight) and recurrent
connections. Loading Whetstone’s models in Doryta, allowed us to
determine the workloads that spintronic-based chips would require
in terms of basic operations. In an analysis of two spintronic-neuron
models, Mn3Ir and NiO, we found that the bulk of the energy con-
sumption of the chips would be driven by the connection between
neurons and not the neurons themselves, the interconnect. Compared
to CMOS architectures, our analysis indicates that spintronic-based
chips have an energy-delay product that is three to six orders of
magnitude smaller at inferencing a single image using the LeNet
architecture.

For future work, we intend to optimize Doryta’s LP model commu-
nications and improve their scalability to bring it up to the level of
convolutional connections. On the hardware performance estimation,
we plan to incorporate the cost associated with peripheral circuitry
and transducers or amplifiers that are needed in a working chip. We
plan to look into ferromagnetic based spiking neurons due to their
ease of fabrication and characterization in the GHz regime as opposed
to THz for spintronics. Finally, since we found that interconnects
are the bottlenecks, we see an interesting avenue for research in the
improvement of interconnects. We believe that building on Doryta
and the techniques in this work will be beneficial to deepening our
understanding of the neuromorphic computing devices of the future.
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