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dynamics and can be realized within a compact form-factor, while operating at ultra-low energy-delay point. In this paper, we
benchmark the performance of a spintronics hardware platform designed for handling neuromorphic tasks.

To explore the beneits of spintronics-based hardware on realistic neuromorphic workloads, we developed a Parallel Discrete-
Event Simulation model called Doryta, which is further integrated with a materials-to-systems benchmarking framework.
The benchmarking framework allows us to obtain quantitative metrics on the throughput and energy of spintronics-based
neuromorphic computing and compare these against standard CMOS-based approaches. Although spintronics hardware
ofers signiicant energy and latency advantages, we ind that for larger neuromorphic circuits, the performance is limited by
the interconnection networks rather than the spintronics-based neurons and synapses. This limitation can be overcome by
architectural changes to the network.

Through Doryta we are also able to show the power of neuromorphic computing by simulating Conway’s Game of Life
(GoL), thus showing that it is Turing complete. We show that Doryta obtains over 300× speedup using 1,024 CPU cores when
tested on a convolutional, sparse, neural architecture. When scaled-up 64 times, to a 200 million neuron model, the simulation
ran in 3:42 minutes for a total of 2000 virtual clock steps. The conservative approach of execution was found to be faster in
most cases than the optimistic approach, even when a tie-breaking mechanism to guarantee deterministic execution, was
deactivated.
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Fig. 1. Source of inspiration for Spiking Neural Networks and abstraction levels. (a) The biological spiking neuron. (b) A
model (Leaky-Integrate Fire) of the biological spiking neuron [28, Fig. 4.1]. (c) Sotware-realizable neuron model: neuron
(soma) and synapses.

1 Introduction

Neuromorphic computing is a non-von Neumann approach to computing inspired on the brain. It has been
proposed as a solution to reduce the high energy consumption needs of machine learning tasks. For example,
as part of the DARPA SyNASPE program, IBM created an instance of a spiking neuromorphic processor, called
TrueNorth, capable of multi-object detection and classiication from real-time video input consuming only 63
milliwats [49]. The chip has 4096 neurosynaptic cores with a total of 1 million spiking neurons and 256 million
re-conigurable synapses. Another example is Intel’s Loihi, 2018, a spiking neuromorphic processor capable of
performing on-chip learning [20]. Even with these low energy consumption chips in development, there is hope
that we have not yet reached the minimum energy limit for neuromorphic computing; according to Hasler and
Marr [33], biological neurons and synapses, if realized truly eiciently in silicon, would be able to compute 1018

multiply-accumulate operations (MAC) per second using only 1 watt of power. To that end, it is important to
continue improving the state-of-the-art and further reduce the hardware costs associated with neuromorphic
computing.

To seek out improvements at the hardware level, we could make use of spintronic devices for the fabrication of
electronic neurons and synapses in a brain-inspired architecture. Spintronics devices, including antiferromagnets
and ferromagnets, made using magnetic materials are non-volatile and can mimic the dynamics of biological
neurons and synapses in hardware in an energy-eicient and compact form-factor, i.e, occupying around the
same space of a single transistor. This energy and area eiciency might open a new artiicial intelligence (AI)
paradigm endowed with real-time learning, adaptation, and prediction. Such brain-inspired AI hardware can be
used in remote, łedge computingž environments with size, weight, and power constraints.
To facilitate our evaluation of spintronics-based neuromorphic hardware, we have developed a multi-scale

modeling and simulation approach where physical hardware costs (i.e., energy, area, and latency) are calculated
for key neuromorphic operations including neuron integration, neuron ire, and signal communication. We
limit our approach to the analysis of these components and leave for future work the estimation of additional
components required to manufacture a chip such as transducers and ampliiers. These performance models are
then imported into the neuromorphic simulator, Doryta1.
The key contributions of this work include:

(1) Modeling approach to quantify the performance of spintronic devices for neural networks:

1Doryta can be found at https://doi.org/10.5281/zenodo.11585299.
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• Quantiication of the energy, chip area, and runtime performance of spintronics-based neurons and
synapses for neural network inferencing tasks resulting in three to six orders of magnitude improvement
in energy-delay product over CMOS designs.

• Exploration of the efect that interconnect size and wire width have on performance metrics.
(2) Development of Doryta, a deterministic, parallel spiking neural network simulation platform able to

simulate neuromorphic applications, validated against existing spiking neural network tools.
(3) Evaluation and validation of Doryta:

• Implementation of Conway’s Game of Life as a pure neuromorphic application model for Doryta, thus
demonstrating that spiking neural networks are Turing-complete.

• Evaluation of parallel Doryta simulation performance wherein the Game of Life neuromorphic application
model obtains over 300× speedup using 1024 CPU cores.

• In depth analysis of what makes the conservative approach for synchronization generally faster than
optimistic when running discrete-event simulations such as Game of Life, and the impact of diferent
coniguration changes such as size of the model and the activation of the tie-breaker mechanism.

2 Background

In this section, we briely introduce the components of spiking neural networks, present the spintronic devices
that simulate those components, and summarize parallel discrete-event simulation.

2.1 Spiking Neural Networks

Ubiquitous Artiicial Neural Networks (ANNs) are not the only relevant bio-inspired development to come out of
studying the brain. Spiking Neural Networks (SNNs) [6], as the name implies, are based on the biological spiking
neurons. The biological spiking neuron is a prevalent neuron type in the brain. It responds to stimuli in the form
of spikes. The simplest electrical model of the spiking neuron is the Leaky-Integrate Fire (LIF) Neuron [6], see
Figure 1, which can be described by only two procedures: a diferential equation that determines how the voltage
of the neuron changes as a function of time

�
�� (�)
��

= � (�) − � (�) −��
�

; (1)

and a conditional rule that dictates how the neuron discharges

if � (�) > �th then set � (�) = �reset and fire (2)

where � (�) is the voltage of the neuron at time � , � (�) is the input current to the neuron, � is the capacitance,
� is the resistance, and �� , �reset and �th are the resting, reset and threshold potentials, accordingly.

Notice that there is no general analytical solution for the two rules, leaving us to seek a numerical solution. To
numerically simulate Equation 1, we discretize it into Δ� time steps

� (� + Δ�) = � (�) + Δ�
−(� (�) −�� ) + � (�)�

�
, (3)

where � ≡ �� .
The neurons in a neural network are interconnected via axons and synapses. We use the term synapse to

refer to the connection between two neurons at a logical level: from a neuron that ires and sends a spike to a
neuron that receives it. At the hardware level, neurons are connected via physical wires or interconnects, while
the synapse is a circuit element capable of changing the intensity of a signal on a wire. All synapses have two
attributes: how much current arrives at the neuron and a delay. For simplicity, we assume that all synapses have

ACM Trans. Model. Comput. Simul.
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the same delay, one clock cycle. This implies that � (�), in Equation 3, represents the summation of all currents
from the synapses that receive a spike at time � , i.e.

� (�) =
︁

�

���� (�), (4)

where�� is the weight for the �-th synapse, and �� (�) is either 1 or 0 indicating whether a spike was received or
not to the �-th synapse at time � , respectively.
With neurons and synapses, we can construct many complex structures, also called neural network (NN)

architectures. A full SNN model is deined by an NN architecture and three procedures (or operations): the leak
operation (Equation 3), the integrate operation (Equation 4), and the ire operation (Equation 2). At the hardware
level, we realize these three operations using spintronics-based spiking neurons and synapses, and metallic
interconnects.

2.2 Spintronics Neurons and Synapses

The ield of spintronics is expected to support semiconductor-based microelectronics in ‘More-than-Moore’
and ‘Beyond Moore’ information technologies [31, 46]. In contrast to conventional electronics that deal with
the charge of an electron, spintronics utilizes the spin of an electron to manipulate, transmit, store and detect
information. Spintronic devices can be fabricated using back-end-of-the-line CMOS processes and, therefore,
realized in modern fabrication facilities without much re-tooling. At the heart of a spintronic device is a magnetic
material: ferromagnetic (FM) or antiferromagnetic (AFM), which acts as the active component and displays
neuro-synaptic dynamics when perturbed by external input (e.g., current pulse or magnetic ields). The spin
conigurations of FM and AFM materials are distinct, which makes them functionally unique as the building
blocks of neuromorphic hardware.

FM-based spintronics nano-devices, such as magnetic tunnel junctions, are commonly used for storage, sensing,
logic, interconnections, and as non-linear radio-frequency oscillators [35]. Recently, it was experimentally
demonstrated that FM-based nonlinear oscillators could be used to build circuits that embed neural functionality
and can perform speech and digit recognition with high accuracy [75]. FM devices have also been used for
realizing synaptic behavior in hardware [8]. Furthermore, AFMs display current-tunable spiking dynamics, which
could be used to replicate the functionality of spiking neurons in an NN architecture.

2.2.1 Antiferromagnetic Spiking Neurons. Due to their unique spin arrangement, AFMs possess no net mag-
netization. When a spin-polarized electric current is injected into an AFM, it can display spiking dynamics,
which are detectable in the form of an output voltage signal. Thus, AFM-based signal generators can emulate
spiking neurons in a compact form-factor in hardware [41, 67]. Figure 2(a) shows an example of an AFM spiking
neuron based on a non-collinear, chiral semi-metal, like Mn3Sn, while the time-domain input and output of
the neuron are shown in Figure 2(c). In order to excite spiking dynamics, an input spin current that exceeds
a certain threshold is provided to the AFM. Based on the material parameters and the dimensions, the AFM
neuron’s spike rate and performance can be eiciently tuned [41, 67]. The neuron spike can be detected in
the form of a voltage signal via the anomalous Hall efect (AHE)[37, 76] through a structure as the one shown
in Figure 2(a) or via tunneling magnetoresistance (TMR) [22] as shown in the setup of Figure 2(b). The latter
has only been theoretically predicted, while AHE has been experimentally demonstrated in a variety of chiral
AFMs [62, 74]. Other detection methods like anisotropic magnetoresistance (AMR) [24] and tunneling anisotropic
magnetoresistance (TAMR) [77, 81] may also be used in the case of Mn3Sn, although such methods have a weaker
output signal compared to TMR and AHE at 300 K. In the case of collinear insulating AFMs, like NiO, a voltage
signal may be detected in a non-local spin valve[68] setup or via the inverse spin Hall efect[18] in a bilayer
structure of AFM and heavy metal.

ACM Trans. Model. Comput. Simul.
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Fig. 2. AFM neuron based on (a) anomalous Hall efect readout and (b) tunneling magnetoresistance readout. (c) A qualitative
sketch of the time-domain output signal, �out, of the neuron, versus the input signal, �in. In (a) and (b), m1, m2, and m3

represent the magnetization vectors of the AFM. In (c), the neuron latency is the timing diference between the input signal
arrival and the time the neuron’s angular velocity reaches a threshold, which is 1010 rad/s for Mn3Sn and 2 × 1012 rad/s for
NiO.
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Fig. 3. (a) Schematic of a spintronic synapse where the free layer and the fixed layer are made of ferromagnetic materials. Input
current is applied across terminals T2 and T3, while the output voltage is measured across T1 and T3. (b) A representative
response of the ferromagnetic synapse over time due to applied input current. (c) A representative result showing the
movement of domain wall under applied training current simulated using MuMax3c.

2.2.2 Ferromagnetic Non-volatile Synapses. Memristive dynamics based on domain wall (DW) movement can
be easily produced by stripe-shaped FM structures, such as Figure 3(a). The device response to input current
can be seen in Figure 3(b), which highlights the ability of the device to store real-valued weights with plasticity.
Thus, FM materials can act as compact and non-volatile hardware emulators of synapses. The conductance of the
device is determined on a training phase. During the training phase, current lows between terminals T2 and
T3. The synapse’s conductance is set by the magnitude and the duration of �in. Figure 3(c) shows the movement
of domain wall motion with increasing input pulse durations. During inferencing, the output current between
terminals T1 and T3 is measured. The output current is given as the product of the voltage across T1 and T3, and
the memristor’s conductance. The memristors can be electrically connected in an analog cross-bar fashion such
that the net current lowing through the bit line is the weighted sum of the memristors’ conductance multiplied
by the input voltage.

ACM Trans. Model. Comput. Simul.
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2.3 Parallel Discrete-Event Simulation

Parallel Discrete-Event Simulation (PDES) is an eicient method for modeling the behavior of complex systems
with discrete interactions between many entities and is a natural match for the independent, discrete behaviors
in spiking neural networks. A PDES simulation is made up of agents or entities known as Logical Processes (LPs)
and timestamped events triggered from and to LPs. These LPs are each mapped to the various cores or Processing
Elements (PEs) that may exist. In our simulation environment, a single core or MPI process is home to one PE.
Given a ixed number of LPs, the more PEs we have, then, the fewer LPs will exist within each PE.

Efective parallelization does not come for free. Computing on a distributed environment requires awell-founded
synchronization strategy. Two main synchronization strategies exist for PDES: conservative and optimistic
approaches. Conservative approaches [7, 16] ensure that events are processed in timestamp order by stalling the
simulation until it is łsafež to process each event. Optimistic approaches [40] allow events to be processed out of
order, but provide a mechanism to detect and erase incorrect event computations. To track time, each LP has
their own clock. The Global Virtual Time (GVT) is the minimum clock time across LPs, anything occurred before
is considered to łhave happenedž and any redundant information from that time can be forgotten.

ROSS (Rensselaer Optimistic Simulation System) is a framework for developing parallel discrete-event simula-
tions. ROSS has demonstrated highly scalable, massively parallel event processing capability for both conservative
and optimistic synchronization approaches [2, 12]. ROSS’ conservative execution is inspired by the YAWNS
protocol [52], utilizing an event creation lookahead window restriction that ensures events cannot be created in a
way that causes out-of-order processing. ROSS’ optimistic execution is accomplished by implementing the Time
Warp protocol [38, 39] which works with virtual time [40] for event time management. ROSS mitigates Time
Warp state-saving overheads via reverse computation [13], where rollback is realized by performing the inverse of
the individual operations that were executed in the event computation. When reverse computation is not possible
(e.g, loating point operations are not reversible), we make use of incremental state saving for rollback [57].

3 Physical Performance Estimation of Spintronic Materials

To estimate the performance of a chip, we estimate irst its building blocks (neurons, synapses and interconnects)
and add them up in larger units (cores) which in turn make up the chip. In this section, we report the method-
ology and performance metrics for neuronal spiking, synaptic integration, and data communication via metal
interconnects. This subsection is used as a building block for Subsection 5.1 where the performance estimation of
speciic networks are computed.

3.1 Antiferromagnetic Neurons

We consider spiking neurons implemented using two diferent types of AFM materials: Mn3Sn (metallic) and NiO
(insulating). These AFM neurons generate a spike with an auto-reset when triggered with a current pulse that
exceeds a threshold value, which depends on the material parameters and dimensions of the neuron. For a typical
4-nm thick NiO-based neuron, the critical spin current density to excite the neuronal dynamics is typically 1× 107

A/cm2 [55]. With a Gaussian input current signal, the latency is related to both the magnitude and the full width
at half maximum (FWHM), �halfwidth, of the current density. With thalfwidth = 5 ps, the latency for NiO-based neuron
is 10 ps. For typical material parameters, considering a Spin Hall angle �SH = 0.05 at the NiO/Pt interface [36], the
critical charge current density to ire a NiO neuron is 4 × 108 A/cm2. Thus, the energy consumed for a spiking
event in a 120 nm × 40 nm NiO-based neuron is around 933 aJ. As for a 4-nm thick Mn3Sn-based neuron, the
input spin current density is 2 × 106 A/cm2 and the latency is approximately 7 ps assuming thalfwidth = 10 ps.
Considering a spin Hall angle �SH = 0.056 at the Mn3Sn/Ru interface [50], the critical current density is 3.6 × 108

A/cm2. Therefore, the energy dissipation of a 120 nm × 40 nm Mn3Sn neuron is 2.8 aJ per spike. The faster
response and lower current density of Mn3Sn contribute to its energy eiciency compared with that of NiO.

ACM Trans. Model. Comput. Simul.
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For comparison, a digital CMOS neuron Ðconsisting of two 8-bit registers, an 8-bit adder, 8 NAND gates,
8 inverters, and three 8-state elementsÐ occupies 110 �m2 area for 15-nm technology node [53]. The energy
consumption per spike for the digital CMOS neuron is 136 fJ, while its operating frequency is 1.58 GHz. The
analog CMOS neuron is based on an analog-to-digital converter read circuitry composed of 32 CMOS inverter
cells and a synapse, which occupies 0.69 �m2 cross-sectional area [53, 54]. The energy consumption of the analog
CMOS neuron is ≈ 140 fJ and its operating frequency is ≈ 503 MHz.

3.2 Ferromagnetic Synapses

In the case of the memristive domain wall-based FM synapses considered here, a 450 × 30 × 1 nm3 device can
host up to 16 distinct resistance levels [45, 65]. In order to ensure that the output current is suicient to ire the
neurons, the voltage applied to the synapse must be

�applied = �neu�max, (5)

where�max is the maximum conductance of the synapse obtained when the synapse’s free layer magnetization is
parallel with that of the ixed layer (see Fig. 3 for free and ixed layers). This implies that �applied is proportional
to the neuron’s input current. As shown in Table 1, the conductance range of the synapse is from 5 × 10−4 Ω−1 to
16.9 × 10−4 Ω−1 with CoFe ferromagnet layer [65]. The corresponding read voltage is set to 0.03 V for Mn3Sn
and 0.38 V for NiO based on the threshold current density of neurons in the network. The latencies of the
synapses connected with Mn3Sn and NiO are both 0.13 ps as shown in Table 1. Consistent with the input and
output signal of the neurons, we assume that the read voltage signal applied to the synapse is also Gaussian with
�ℎ�� � ����ℎ = 10 ps and the corresponding energy dissipation per synaptic event is 7.8 aJ for synapses connected
to Mn3Sn neurons and 983 aJ for synapses connected to NiO neurons.

By comparison, a digital CMOS synapse, consisting of an 8-bit SRAM register and a state element, consumes ≈
170 fJ energy, while its latency is 0.64 ps [53]. The footprint of the digital synapse is estimated as 1.38 �m2. For
an analog CMOS synapse, comprising two operational transconductance ampliiers, the energy consumption is ≈
2 fJ, latency is 19 ps, while its area is 0.17 �m2 [53, 54].

3.3 Interconnects

The aforementioned neurons and synapses are interconnected to each other via Cu/low-� technology. The energy
of these interconnect can be evaluated as

�ic = ����
2, (6)

where�� is the per-unit-length interconnect capacitancewhich is dependent on thewirewidth, � is the interconnect
length, and � is the supply voltage, which for the Mn3Sn neuron is 3.2 mV while for NiO is 26 mV. We model the

Table 1. Metrics of the DW-based ferromagnetic synapse with Mn3Sn-based and NiO-based neurons.

Parameter Mn3Sn NiO

Conductance range (10−4 Ω−1) 5-16.9 5-16.9
Sensing voltage (Volt) 0.03 0.38
Latency (picoseconds) 0.13 0.13
No. of conductance states 16 16
Energy dissipation (atto-Joules) 7.8 983

ACM Trans. Model. Comput. Simul.
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interconnect length for neurons, �ic,neu, and that for synapses, �ic,syn, according to

�ic,syn =

√
�syn�core,

�ic,neu =

√
�core�layer, (7)

where �syn (�core) is the synapse (core) area, �core is the number of synapses per core, and �layer is the number of
cores per layer.

At the core level, the RC-delay dominates the total delay of the interconnects. Thus, we consider it as part of
the synapse delay and evaluate it as

�syn,ic = 0.69(�ic�ic + �load�ic + �ic�load), (8)

where �ic = �
�
�
�ic is the interconnect resistance, �ic = ���ic,syn is the capacitance of interconnects, �load is the

efective resistance of a synapse, and �load is the capacitance of the synapse.
At the chip level, the interconnect delay is associated with the neuron operations and is thus evaluated as

�neu,ic =
���ic,neu�neu

�neu
, (9)

where �neu is the input current of the neuron, and �neu is the neuron voltage. �neu = �neu�neu, where �neu is the
neuron’s input current density, while �neu,HM is the neuron’s side section area of heavy metal layer. Table 2 lists
the values of �neu and �neu for both Mn3Sn and NiO neurons.

Interconnects’ resistivity increases non-linearly as the device size shrinks and this causes a worsening perfor-
mance of the interconnects at smaller dimensions. The leading terms in increasing the resistivity are surface
scattering and grain boundary scattering [25]:

�ic = �0,ic + �0,ic�0,ic
3(1 − �)

4�
+ �0�

3�

2� (1 − �) (10)

where �0,ic = 1.67 �Ω·cm is the Cu bulk resistivity, � = 39.5 nm is the mean free path of electrons in bulk Cu, � =
0.5 is the specularity parameter for surface scatterings, and � = 0.3 is the grain boundary relectivity. Assuming
an interconnect aspect ratio (i.e., the ratio of the thickness and width) of 2 and Ta/TaN liner thickness of 3 nm,
the interconnect width, � =�wire − 6 nm and the thickness T = 2wwire-6 nm which is also considered as the grain
size � = � .

The interconnect capacitance per unit length is given as [29]:

�� = �ox

[

1.15

(

�

�

)

+ 2.8

(

�

�

)0.222
]

+ 2�ox

[

0.03

(

�

�

)

+ 0.83

(

�

�

)

− 0.07

(

�

�

)0.222
]

(

�

�

)−1.34
(11)

Table 2. Performance metrics of AFM neurons.

Value

Performance metric
NiO

(insulator)
Mn3Sn
(metal)

Input electric current 0.64 mA 57 �A

Input voltage 0.16 V 5.6 mV

Output spike voltage 0.4 mV 5.6 mV

Latency 10 ps 7 ps

Energy dissipation 930 aJ 2.8 aJ

Area 40× 120 nm2 40× 120 nm2

ACM Trans. Model. Comput. Simul.
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where �ox = 2.55�0 [26] is the permittivity for porous SiCOH,� and� are the width and thickness of interconnects,
respectively, while � is the spacing between the interconnects and is assumed equal to� . The distance from the
ground plane � = 5 nm. The typical values for����� = 10, 20, 30 nm are �� = 0.31 pF/m, 0.52 pF/m, 0.76 pF/m
respectively.

3.4 Chip-level benchmark

Instead of thoroughly designing each part of the chip, we introduce empirical factors to approximate the area
associated with peripherals and to accommodate the design rules for component spacing. All cores in our work
are connected using a crossbar architecture. The core area is given as

�core = (�neu�core�neu + �syn�in�out�syn)�core, (12)

where �syn = 2, �neu = 2 and �core = 2 represent the empirical area factor for synapses, neurons and cores,
respectively, and �in (�out) is the number of input (output) neurons for the core.

In case the number of input neurons is smaller than the synapses per neuron, the core area is estimated using
the convolution core architecture [53]. Replacing the input neuron numbers by the synapse numbers per neuron,
we obtain

�core = (�neu�core�neu + �syn�neu�out�syn)�core (13)

The fan-in of AFM neurons is considered to be ininite because the input current sums up in the interconnects
naturally. All the cores in the same layer operate simultaneously and each core operation delay is determined by
one synaptic operation and one neuron operation. The delay per core is given as

�core = �neu + �syn + �neu,ic + �syn,ic. (14)

The energy consumption per core is the summation of energy dissipated in all the synapses and neurons. The
energy consumption of a core is workload-dependent because both the active synapse rate and the neuron ire
rate depend on the workload-related parameters presented to the neurons and synapses. The active synapses per
neuron and the active neurons per inference (per core) are

�act,neu = �neu�act, (15)

�act,core = �core�act, (16)

where �act and �act are the ratio of active synapses and neurons per layer, respectively.
Adding all up, the energy consumption per core is

�core = �syn�act,neu�core + �neu�act,core . (17)

At the chip level, the area and energy consumption are the summation of all cores:

�chip =
︁

�

︁

�

�core,� � , (18)

�chip =
︁

�

︁

�

�core,� � , (19)

where � is the layer index, while � is the core index in a speciic layer. It is worth noting that all cores of the same
layer operate in parallel and thus the chip latency is given as

�chip =
︁

�

maxlayer,� (�core, � ). (20)
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4 Doryta: Simulating Spiking Neural Networks

Doryta 2 is an architecture-agnostic and deterministic Spiking Neural Network simulator built on ROSS. Doryta’s
job is not to train a network for a task, i.e., no neuron parameter is altered in the simulation of the network,
instead, it is intended to be a reliable, deterministic, and time-aware simulator of SNNs.
Doryta difers from its inspirational predecessor, NeMo [60], in several regards. First, NeMo was written in

a combination of C, C++, and Lua, while Doryta is written in pure C. Second, NeMo was originally designed
to simulate the TrueNorth [14] chip, and generalizing it to any arbitrary architecture proved a diicult task. In
contrast, Doryta is written to be architecture agnostic, and therefore, more lexible, which allows for recursive
neuron connections.
We base our SNN implementation on the LIF neuron model for its combination of simplicity and capability.

Although there are dozens of neuron models implemented in libraries, many of them, however complex, can be
boiled down to behavior similar to that of the LIF neuron, i.e., a neuron can be modeled by the application of three
simple rules: the leak rule, the integrate rule and the ire rule. We demonstrate the capabilities and computational
power of the LIF neuron model (and its Turing completeness) in Subsection 4.2. More realistic biological neuron
models and other complex are out of our scope as we focus on digital neurons.

In the following subsection (4.1), we explain Doryta’s implementation details. We then present two outstanding
applications for SNNs: in subsection 4.2, Conway’s Game of Life, and, in subsection 4.3, image classiication with
the LeNet architecture.

4.1 Implementation Details

Doryta is implemented as a ROSS model divided up into multiple modules: driver LPs (neuron LP), layouts,
model-loaders, and neuron types. Here, we explain in detail each module and related concepts such as łDoryta
modesž, event types, and Δ�-step.

4.1.1 LPs and Events. Each LP in Doryta represents a single neuron and is composed of three parts: an ID, a list of
synapses (weighted connections to neurons), and a pointer to the LIF neuron parameters (potential, capacitance,
current, resting and reset potential, and threshold). New neuron models can be implemented as C structs to
replace the default LIF neuron model pointer.
In a time-stepped simulation, the state of the system is updated one delta-time step at a time (Δ�-step). This

Δ�-step is model dependent and determines the granularity of the simulation. The smaller the Δ�-step, the more
precise the simulation, at the cost of a larger computational time. Given the nature of PDES, this Δ�-step in
Doryta has to be explicitly encoded as an event. We call this event a heartbeat event.

In the LIF neuron model there are three rules: leak, integrate, and ire. Notice that, typically, in a time-stepped
simulation all three rules should be executed one after the other on each Δ�-step, but this is not the case in DES.
If there is no positive leak, integration will only happen when the neuron is suspected to ire, i.e, when a spike
arrives. The leak operation is applied on every Δ�-step. These two concepts can be captured by two events:

• Heartbeat event: It applies the rules: leak and ire, in that order. It is scheduled every Δ�-step. It is received,
processed, and sent by each neuron to itself. There is at most one heartbeat event per neuron at any given
point.

• Spike event: It applies the integration rule (aka, summation) to the neuron, i.e., for the LIF neuron, the
spike’s current is added up to the input current � (�) at time � . It can be scheduled at any point in time. Spike
events can be created in two ways: loaded when the simulation initializes or created by a neuron.

2Doryta is an amalgam composed of the name łDoryž and the Spanish-origin suix łitaž. Dory comes from the movie łFinding Nemož where
a forgetful regal blue tang, called Dory, inds herself accompanying a clownish in an adventure to ind his son, Nemo. Doryta is the spiritual
successor to NeMo, another SNN simulator built on ROSS. Doryta, however, is simpler, more modular and lexible Ð which, we believe, is the
essence of Dory the ish.
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Although, on biological neurons, spikes are continuous changes in voltage and not instantaneous changes, this
instantaneous approximation is acceptable in our context. Our objective is not to reproduce exactly the behavior
of biological neurons, but our objective is to reproduce the behavior of typical neuromorphic implementations.
Therefore, computational models that are of interest to Doryta align with existing hardware implementations
and thus sufer no discrepancies.
We make use of incremental state saving to allow us for the rollback of events under optimistic execution

[1]. Heartbeat events are an example of self-initiating models, which have been proven to lead to good perfor-
mance [51].

Due to the possibility that two or more events could occur with the same timestamp (an event tie), we lean on
the tie-breaking feature of ROSS [47] to maintain simulation determinism and validity. This will also guarantee
that the order of any two independent, simultaneous events is explicitly randomized. We have implemented
user-deined event priorities to guarantee that heartbeat events must always be processed before spike events,
should they occur at the same timestamp. Our implementation of user-deined event priorities takes advantage of
the sorting mechanism imposed by the sequence of tie-breaking values (deined by the tie-breaking mechanism).
The sequence is extended with an extra value on front which is user-deined and defaults to 1. This allows the
user to have control over the priority of the events if they occur at the same timestamp, yet it has to be used
with care as it can easily break the tie-breaking mechanism. The user knows what to do and they can break the
determinism of the simulation if they so desire.

4.1.2 Modes. When we can guarantee that a neuron does not have positive leak, then the neuron is guaranteed
to ire if only if it receives a spike. Thus, without positive leak, there is no reason to schedule a heartbeat event
every single Δ�-step, otherwise we would have a recurring heartbeat event consuming resources when no spikes
arrive. We can leverage this fact and run simulations in one of two modes:

• Needy mode: A heartbeat event is scheduled every Δ�-step regardless of neuron input.
• Spike-driven mode: A heartbeat event is scheduled only after a spike is received, preventing the creation
of heartbeat events when they are not needed.

Needy mode allows for neurons with positive leak, while spike-driven does not, yet it has a speedup advantage.
To make simulations on both modes semantically the same, two constraints should always be maintained:

heartbeats are allowed to be scheduled only at speciic timestamps, and a new operation (big-leak) must yield
(approximately) the same as computing the operation � times.

To exemplify these two constraints, let us ind out when should a heartbeat event be scheduled for a Δ�-step of
1.0. In needy mode, the irst heartbeat would be scheduled at time 0.0, and once it is processed, it would schedule
a heartbeat at time 1.0, then at 2.0, and so on. In spike-driven mode, no heartbeat would be scheduled at time 0.0.
Instead, if a spike arrives at time � then we would have to update the state of the neuron to that point in time
(applying the big-leak operation) and then we would schedule a heartbeat for time ⌊�⌋ + 1. If updating the state
(big-leak operation) behaves the same as applying the leak operation consecutively, then we can ensure that with
a Δ�-step of 1.0 both simulations will produce the same iring pattern. That being said, for other Δ�-step values
like 0.1, although entirely reasonable, one cannot guarantee the same iring pattern due to a loss in precision
of loating-point arithmetic operations (addition is not repeated multiplication for some values like 0.1 when
represented in binary). Thus a careful choice of loating-point Δ�-steps is crucial. Both operation modes are
exempliied in Figure 4.

4.1.3 Delta-time step and Leak operation. In needy mode, the next heartbeat event is scheduled a Δ�-step from
whenever the previous heartbeat event is processed. In spike-driven mode, heartbeat events are not scheduled by
heartbeat events but by spike events. When a spike arrives, it runs the integration operation, and then checks
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Time
Input
Spikes

Output
Spikes

Fig. 4. Heartbeat scheduling for needy (solid blue hearts) compared to spike-driven (doted green hearts) modes.

Fig. 5. Mapping configurations. Top: A single fully connected network with 28 neurons. Botom: 3-layer SNN with dimensions
[5 10 16 2] (input 5, output 2).

whether a heartbeat event has already been scheduled and not yet processed (a � (1) operation). If there is no
heartbeat event scheduled, it will schedule one for the time:

�heartbeat =

(⌊

�spike

Δ�

⌋

+ 1

)

× Δ� (21)

Subsequent spikes arriving before �heartbeat will not trigger the scheduling of more events. Given the nature of
loating-point number arithmetic, we recommend using Δ�-steps equal to a power of 2 as that is more resistant
to loating-point precision errors.
The leak operation (see Equation 3) is a discretization of the diferential equation for the neuron behaviour

(see Equation 1). As noted before, when no spikes arrive at the neuron, there is no need to update the state of the
neuron. It is possible to determine the state of the neuron if the input current (� (�)) is zero (or constant) over any
period of time, which means that we can compute the new state at once instead of needlessly applying the leak
rule many times. This new computation is called the big-leak operation and it is equal to:

� (�) = �� + �
−�
� × (�� −�� ) (22)

where � is the time elapsed since the state of the neuron was last computed.

4.1.4 LP Mapping and Layouts. Neurons are assigned in groups to each PE. In Doryta, a batch of neurons is
reserved to a range of PEs. There can be as many batches as necessary for any simulation. Figure 5 shows two
diferent mappings using the same number of neurons.
On top of the neuron mapping, we have the connections between neurons, synapses. We have implemented

two kinds of connections: ‘all-to-all’ connections and 2D convolutional connections. An all-to-all connection is
deined from a range of output neurons to a range of receiving neurons. A fully connected layer is an example
of an ‘all-to-all’ connection (see an example in Section 4.3). A 2D convolutional connection is also deined
between a range of output neurons and receiving neurons, with some additional parameters (input image width,
kernel parameters (width and height), padding and striding). The total number of synapses for the convolutional
connection is at most �� × �ℎ × �� where �� is the total number of receiving neurons, and �� and �ℎ are the
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1 1 0 0 0 0
1 0 0 1 0 0
1 0 1 1 0 1
0 0 0 1 0 0
0 1 0 0 0 1

Input state

1 1 0 −1 −1 −2
2 3 2 1 1 −1
0 1 2 2 2 −1
0 1 2 1 2 0

−1 −1 0 −1 0 −1

−1 −1 −1 −2 −2 −3
0 2 1 −1 0 −2

−2 0 0 0 1 −3
−1 0 1 −1 1 −1
−2 −3 −1 −2 −1 −2

1 1 1
1 1 1
1 1 1

1 1 1
1 0 1
1 1 1

Life kernel
bias = -2

Kill kernel
bias = -3

1 1 0 0 0 0
1 0 0 1 1 0
0 1 1 1 0 0
0 1 0 1 0 0
0 0 0 0 0 0

Next state

1 −1Board kernel
bias = 0

Fig. 6. Conway’s Game of Life as a 2-layer convolutional Neural Network. The first layer has a padding of 1 and a kernel
with two filters (Life Kernel and Kill Kernel). The second layer has no padding and a kernel of 1 × 1, two input channels and
one filter (the Board Kernel). A neuron fires (in grey) when its summation (plus bias) surpasses 0, i.e., the activation function
for both layers is the step function centered on 0.5.

width and height of the kernel. Note that the number of connections/synapses for a convolutional connection are
much smaller than for an all-to-all connection.
All-to-all and convolutional connections are pervasive in ANN applications because of their simplicity and

geometric characteristics. In Section 4.2, we show how to construct a grid for Conway’s Game of Life made out
of four convolutional connections.

4.2 Neuromorphic application: Conway’s Game of Life and Turing Completeness

Conway’s Game of Life [27] (GoL) is an extensively studied cellular automata, a fascinating mathematical
construction built out of a grid of cells and a list of rules that determine how the state of the cells change in time.
Each cell in the grid is in one of two states: dead or alive, and each cell has eight neighbours. If the grid has a
border, then some cells will have less than 8 neighbours. The rules of GoL are simple: a cell stays alive if there are
two (2) or three (3) neighbouring cells alive, otherwise it dies; and, a cell comes to life if it has exactly three (3)
alive neighbours, otherwise it stays dead.
As noted by [69], it is possible to encode the rules of GoL, and thus simulate GoL, as a multi-layered Neural

Network. In Figure 6, we show a 2-layer NN which simulates one step of GoL using as activation function the step
function centered on 0.5. Notice that the shape of the network’s output (the third layer) is the same as its input.
This allows us to connect the output of the last layer as input to the irst layer, thus building a recurrent network.

The irst convolution is composed of a kernel of size 3 × 3 and two ilters. We can analyze this kernel by
breaking it up into two pieces, one per ilter. The irst 3 × 3 kernel corresponds to the Life kernel, which when
applied counts the number of cells alive on groups of 9 cells at the time. The bias for the Life kernel (−2) is
added up to these counts resulting in the Life number. It can be seen in Figure 6 that the Life number for the
uppermost-rightmost quadrant in the input state is equal to 1 (in red). Note that all numbers are natural numbers.
If the Life number is bigger than zero, then either the neuron was dead and at least three neighbours are alive or
it is alive and at least two neighbors are alive; in either case, the neuron output should be 1 (the neuron ires and
a spike is sent). The second 3× 3 kernel corresponds to the Kill kernel, which when applied counts the number of
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cells alive around a cell. The bias for the Kill kernel (−3) is added up to this count resulting in the Kill number. If
the Kill number is bigger than zero, this means that the number of cells alive around a central cell is bigger than
4, which is not a good outcome for the central cell as it cannot be alive with that number of neighbors regardless
of its current state (dead or alive).

In Figure 6, the Kill number for the cell centered in the uppermost-rightmost quadrant is 0 (in blue). The two
łimagesž resulting from the application of the irst convolution (Life and Kill images) are binary, containing either
1s and 0s or spikes and no-spikes, and they tell us which cells have a chance to be alive, and which must be
stopped and killed (respectively). The second convolution (between the second and third layers) is in charge
of determining the łlifež status of each cell given the output from the Life and Kill images. The Board kernel
distinguishes the input from the Life image or Kill image. All values in the Life image are multiplied by 1 and
all values in the Kill kernel are multiplied by −1. The two resulting values, per cell, are added up, giving us the
Board number. If the Board number is zero, then the cell is dead, but if it is one, then it is alive. In Figure 6, the
green box on the next state image shows the result of adding up 1 · 1 and 0 · −1.
A cell in GoL using the 2-layer NN strategy from above can be represented by three neurons, one for the

Board kernel and two for the Life and Kill kernels. The simulation takes two clock cycles (Δ�-steps) to simulate
one time step of GoL. In the irst clock cycle, the input state is sent as spikes from the irst to the second layer
following the Life and Kill kernel weights and the neurons ire if the conditions apply. In the second clock cycle,
the neurons that ired on the previous cycle send a spike to the irst layer where it is determined whether the cell
is alive or dead.
The neuron parameters for GoL are: �� , ������ of 0, � of 0.5, � of 1 and threshold equal to 0.5 − ����� , where

����� is the bias for the neuron � in one of the three possible neuron groups: Board, Life or Kill. The synapses’
weights are: 0 if the neuron being connected corresponds to the same cell and the kernel is Kill, −1 if the synapse
connects from the group of Kill neurons to the Board neurons, and 1 in any other case. See Table 3(a) for GoL’s
crossbar coniguration for a grid of size 20 × 20. The number of input lines for the Board layer is three times that
of the size of the grid because it collects the result of the Life and Kill layers as well as the initial state input.

A natural corollary from GoL as a SNN is that: SNNs are Turing-complete! GoL has been shown to be Turing-
complete [4]. Thus, we have shown that the requirements for SNN Turing-completeness are at most: two neuron
parameters (threshold and leak), one synaptic parameter (weight) and recurrent connections. Furthermore, it is
possible to modify the 2-layer convolutional NN to make use of only non-negative numbers, which makes it
possible to set a ixed threshold for all neurons getting rid of one neuron parameter. Previous work by Date et.
al [19] showed the Turing-completeness (TC) of SNNs. They used the equivalence between �-recursive functions
and Turing Machines to prove TC of SNNs. Our work relaxes the requirements for TC to: tunable leak, weighted
synapses and recursive connections.

4.3 Neuromorphic Application: MNIST Classification

MNIST [43] is a classical Machine Learning dataset consisting of 70, 000 grayscale images. Each image is a 28× 28
grid containing one handwritten digit. This dataset is commonly used to test the ability of new Machine Learning
models for classiication, and as a bench-test for new hardware architectures.

A simple and popular feed forward network used for image classiication on MNIST is LeNet [42]. LeNet can
be implemented in virtually any neural network framework, including Doryta and Whetstone [66]. Whetstone
allows us to train restricted ANNs which can be easily encoded into memoryless SNNs. An ANN model trained
with Whetstone can be encoded into memoryless SNNs with little modiication. We follow the same crossbar
structure as proposed by [53] with crossbar parameters as seen in Table 3(b). Notice that MNIST contains only
10 classes, while we use a total of 100 neurons (and thus an output of 100). This discrepancy is due to a loss
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Table 3. Crossbar configurations for: (a) Conway’s Game of Life (layer 1 receives spikes from layers 2, 3 and the initial input);
(b) LeNet as crossbar connection. Boxes indicate crossbar units; lines represent connections between units and input/output.

(a)

Layer
Input
Lines

Number
of

Neurons

Synapses per
Neuron

Board 1200 400 3
Life 400 400 8.41
Kill 400 400 8.41

(b)

# Type
Input
Lines

Filters
Number

of
Neurons

Synapses per
Neuron

1 Conv 784 1 784 1
2 Conv 784 6 784 22.90
3 Conv 784 6 196 4
4 Conv 1176 16 100 150
5 Conv 100 16 25 4
6 Full 400 - 120 400
7 Full 120 - 84 120
8 Full 84 - 100 84

incurred when enforcing the step function as the only activation function for the network (Whetstone’s primary
restriction).
The translation from a ANN trained in Whetstone, to a LIF-based SNN requires setting up some parameters.

The spiking neuron parameters we have selected are:�� of 0,������ of 0,� of 1/256, � of 1 and the��ℎ (threshold)
is equal to the bias of the neuron (plus 0.5 as per details of Whetstone’s implementation). The synapses’ weights
are in the same the weights as those obtained in Whetstone.

4.3.1 Validating Doryta against Whetstone. Using the neuron parameters above mentioned, we loaded in Doryta
all models previously trained in Whetstone. We fed all models all 10, 000 test images. Whetstone’s output and
Doryta were compared spike per spike. No diferences in the output of either tool was found. Even though both
libraries/programs run in diferent languages, Doryta is capable of reproducing Whetstone’s results.

Regarding simulation speed, however, Whetstone is a clear winner. Whetstone takes seconds to infer the class
of all 10, 000 images while Doryta runs for a couple of minutes. This discrepancy is due to the high granularity
of neuron operations in Doryta (a neuron is composed of several values), while Whetstone treats neurons as a
summation boxes with no memory of past events. We expect that once transferred to hardware, memoryfull
neurons will operate independently and in parallel of each other at much higher rates than what Doryta can
simulate. As we show in Section 5.1, inferencing a single image requires only 8 clock cycles (one clock cycle per
layer) which in spintronic hardware could take up to only a couple of microseconds. All models and scripts to
check Doryta and Whetstone’s outputs can be found in the supplementary material.

5 Experimental Results

In this section we present two sets of experiments: hardware performance estimation of a CNN classiier, and
scalability of Doryta using GoL for benchmarking. Most experiments in this work were run using up to 32
compute nodes on RPI’s AiMOS supercomputer [15]. Each node of AiMOS is composed of two, 20-core IBM
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Power9 processors clocked at 3.15GHz and 512GiB of RAM. Doryta was compiled using IBM’s XLC_r and the
Spectrum MPI library. Additional experiments to determine the cache hit rate were run in a 20 core Intel Xeon
Gold 5218R processor and made use of Intel’s Performance Counter Monitor (PCM) tool to collect low-level
hardware performance counter statistics. All experiments ran under spike-driven mode (Subsection 4.1.2).

5.1 Hardware Performance Estimation

Following Nikonov and Young’s energy estimation strategy [53], we designed and trained four crossbar models
for the task of image recognition. The models were tuned to process 28 × 28 black and white images from two
datasets: MNIST and fashion-MNIST, and follow LeNet, as presented in Table 3(b). In their framework, Nikonov
and Young assume an approximate layout for each component of the model in the chip, an approximate placement
for each neuron, synapse and interconnect in each crossbar. In contrast, we gathered the usage of each component
(leak, ire and integrate) and from these statistics, we calculated latency and energy (additionally to the area of
the chip). This performance estimation process was automated in Python3.

The four workloads (corresponding to four models) are:

SL (Small LeNet): a LeNet-like model trained on the MNIST dataset. It only difers from the original LeNet on
the activation functions and the number of output neurons (100 for us, 10 traditionally).

SLF (Small LeNet Fashion): same model coniguration as SL, but trained on Fashion-MNIST dataset [80].
LL (Large LeNet): model trained in MNIST dataset, but larger than SL. We increased the number of ilters for

the convolutional layers: 16 and 48 ilters, instead of 6 and 32, respectively.
LLF (Large LeNet Fashion): same model coniguration as LL but trained on Fashion-MNIST.

It is worth mentioning that, according to the output voltage of AFM neurons we adopted, sense ampliiers are
required as part of the neuron to generate an appropriate signal. The absence of sense ampliier in this benchmark
overestimates the performance of spintronics based networks.
The performance of the chip is divided into four distinct components: neurons, synapses, neuron-connected

interconnects, and synapse-connected interconnects. The performance of each component, as well as the layer-
wise performance, are presented in Figure 7 for both Mn3Sn-based and NiO-based networks with 20 nm-width
wire.

Figure 7(a) displays the energy consumption of each chip component. The Mn3Sn-based network demonstrates
a signiicant advantage over the NiO-based network, not only for neurons but also for synapses and their
connected interconnects. This is due to the low input charge current, which enables lower operating voltages
for both neurons and synapses. The large quantity of synapses makes the synapses and relevant interconnects
the dominant term in the energy consumption. From Eq. 5, the operation voltage of synapses is proportional
to both its resistance and neuron’s input current, which accounts for Mn3Sn-based network’s superiority than
NiO-based network in synapses.
Figure 7(b) shows the energy dissipated in each layer, which is dependent on workload allocation. The SLF

workload has approximately 40% more integration and iring operations but the energy consumption is similar to
the SL workload. Also, the LLF’s integration and iring are 1.8 times that of LL’s (see Figure 11) but less than 1.5
of the energy consumption. The fourth and sixth layer are dominant in energy consumption and the ‘Fashion’
workloads do not consume much more in these two layers so they are more energy eicient.

As mentioned in Equation 14, the latency of each layer is the collaborative contribution of one synaptic
operation and one neuron operation, and it is dominated by the number of layers and interconnect delay per
core. The area of each layer, dominated at the chip-level by the interconnect, is the largest contribution to the
delay diference between diferent workloads implemented using the same neuron device. Figure 7(d) shows the
latency of processing single layers. Note that only the network size, the number of cores and their size, inluence

3The Python script can be found in the supplementary material.
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Fig. 7. (a) Energy consumed by diferent components. ‘neu-ic’ (‘syn-ic’) is the chip-level (core-level) interconnect. (b) Energy
consumption reported layer by layer. (c) Latency of devices and interconnects. (d) Latency of each layer.

the latency of each layer. There is no diference latency-wise between workloads running on the same network
model (e.g., no diference in latency between SL and SLF).

Figure 7(c) shows the latency of each component of the network. The dominant term is the synapse-connected
interconnects and it is invariant regardless of neuron type and workload. It is only related to the area of each
core and the interconnect RC properties. The synapses and interconnects both play a signiicant role in both
the energy consumption and the latency computation, therefore, they have become the bottlenecks of further
reduction in dissipation and latency.

Figure 8 shows the dependence of the latency and energy consumption on the interconnect width. Consistent
with Eq. 10, the network latency increases as the wire width shrinks because of higher surface and grain boundary
scatterings of the interconnect, which increases the interconnects’ RC delay. The energy dependence shown in
Figure 8 is that the energy consumption has a slight positive correlation with the interconnect size because the
capacitance of interconnects slightly increases with wider wire.

ACM Trans. Model. Comput. Simul.



18 • E. Cruz-Camacho, et al.

10 15 20 25 30
wire width (nm)

(a)

10−9

10−8

10−7

10−6
L
at
en
cy

(s
)

10 15 20 25 30
wire width (nm)

(b)

10−10

10−9

10−8

10−7

E
n
er
gy

(J
)

Mn3Sn NiO Digital CMOS Analog CMOS

Fig. 8. (a) Latency of Small LeNet workload versus interconnect width. (b) Energy consumption of Small LeNet workload
versus interconnect width for one inference.

Table 4 shows the performance estimate quantity per inference with the four diferent workloads for a 20 nm
interconnect width. Benchmarks corresponding to analog and digital CMOS neural networks are also included as
a comparison. Spintronics-based neural networks, especially Mn3Sn-based network, show signiicantly superior
performance compared with their CMOS counterparts. The AFM neural networks are promising to operate
in higher frequency and take less chip area. For the best case,the AFM(Mn3Sn)-based network outperforms
analog-CMOS network energy-wise by a factor of 1314× (= 29313 pJ/22.3 pJ) and latency-wise by a factor of
30× (= 29 ns/0.96 ns) and for the worst case, the AFM(NiO)-based network outperforms analog-CMOS network
energy-wise by a factor of 10× (= 29313 pJ/2798 pJ) and latency-wise by a factor of 22× (= 29 ns/1.3 ns). When
comparing with digital CMOS, the energy and latency improvements driven by Mn3Sn-based devices are 11935×
(= 266160 pJ/22.3 pJ) and 149× (= 143 ns/0.96 ns) respectively.

We also report the compound metric energy-delay product (EDP) for both spintronics-based and CMOS-based
networks. We ind that Mn3Sn-based neural networks ofer four orders of magnitude lower EDP compared to
CMOS neural networks (43100× = 862 × 10−18s · J/0.02 × 10−18s · J) and NiO-based neural networks ofer two
orders of magnitude lower EDP compared to CMOS neural networks (237× = 862 × 10−18s · J/3.64 × 10−18s · J).

To compare these results to real world data, we took a look at the energy performance of a neuromorphic chip
implementation, IBM’s TrueNorth chip. According to Cheng et al. [17], TrueNorth could inference images from
the MNIST dataset at a rate of 1249 frames per second with an energy performance of 6122.44 frames per second
per Watt. Given that 1 Watt equals 1 J/s, 6122.44 frames/s/W is the same as 6122.44 frames/J or 163.334 �J/frame
(163, 334 nJ/frame). One might be tempted to compare this energy estimate, 163, 334 nJ/frame, with any of the
estimates on Table 4, but one must be careful because the size and shape of the models studied on both works are
diferent. Cheng et al. based their work on the CIFAR network, ours is based on LeNet. Additionally, TrueNorth
was conceptualized as a collection of 256 × 256 crossbars (called cores), while we assume variable size crossbars
up to a size of 784× 784. We approximate that the number of TrueNorth cores necessary to implement our largest
network (LLF) is at least 1400. Given that Cheng et al. used 4064 cores for their network, an appropriate factor
to compare their estimation to ours is 3 (divide 4064 by 1400). This means that inferencing an image using the
TrueNorth chip with a model based on LeNet would take around 54, 444 nJ, while our estimation is of 4650 nJ for
Digital CMOS. This one order of magnitude discrepancy can be explained by three factors: one, the lack of precise
igures to compute the approximation; two, the myriad of CMOS implementations for synapses and neurons; and
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Table 4. Performance of various technologies on diferent workloads. Note that the iso-latency power dissipation of various
networks will be directly proportional to their energy consumption and is therefore not reported specifically in the table.

Neuron Workload
Area
(mm2)

Latency
(ns)

Energy
(pJ)

E· �
(10−18s· J)

Mn3Sn

SL 0.27 0.96 22.3 0.02
SLF 0.27 0.96 19.9 0.02
LL 1.55 2.23 272 0.61
LLF 1.55 2.23 389 0.87

NiO

SL 0.27 1.3 2800 3.64
SLF 0.27 1.3 2500 3.25
LL 1.55 2.98 34100 102
LLF 1.55 2.98 48800 145

Analog
CMOS

SL 3.46 29.4 29300 862
SLF 3.46 29.4 25900 762
LL 19.7 49.2 414000 20400
LLF 19.7 49.2 588000 28900

Digital
CMOS

SL 38.2 143 266000 38100
SLF 38.2 143 243000 34800
LL 204 328 2670000 875000
LLF 204 328 3870000 1270000

three, the cost associated with peripheral circuitry and transducers or ampliiers that will be needed, which we
do not account for in our calculations.

Even though the performance results for spintronic neural networks are exciting, spintronic devices have some
limitations compared to ideal LIF neurons. First, the synaptic weights can only be non-negative. We found that
enforcing non-negative constraints on the weights resulted in trickier to train SNN models, yet, once trained, the
workloads were not substantially diferent. Secondly, neuron leak and threshold cannot be tweaked as they are
intrinsic values of the materials. Fortunately, when only considering positive weights, we only need to scale up or
down the synaptic weights to keep the neuron threshold ixed. Lastly, spintronic synapses have about 64 diferent
levels (6 bits), whichÐcompared to the SNNs trained for this workÐis a fraction of what single loating-point
numbers can store. We found that restricting the network to unsigned 8-bit numbers did not afect accuracy by
more than half a percent. It has been shown that 4 bits are enough for NNs to learn [72]. Thus, with the right
technique to discretize the network, 6 bit networks should perform on par. We also found improvements on
accuracy (up to 10%) with gray-scale images (instead of black and white) via temporally encoding spikes.

5.2 Parallel Performance Experiments - Strong Scaling

As seen in Table 5, a strong scaling experiment was performed using GoL with a grid of size 1024 × 1024, starting
on one core (or MPI rank) and scaled up to 1024 cores on 32 nodes. Note, that only 32 of the 40 cores available on
each IBM Power9 compute node were used. The other 8 cores were made available for OS and other system jobs
and to reduce the efects of any OS jitter [3]. The parallel simulation ran for 1000 GoL steps starting with the
same initial coniguration (each cell had a probability of 20% of being alive). A total of 3, 145, 728 LPs are required
for the simulation (3 neurons per cell) and 1.88× 109 events were processed. Because of Doryta’s determinism, all
executions generated the same number of commited events (1.88×109). After carefully tuning all ROSS simulation
parameters (number of KPs per PE, batch size, and GVT parameters), it was observed that an optimistic event
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Table 5. Strong scaling for a simulation of GoL using the tie-breaker mechanism. Randomly initialized GoL grid with size of
1024 × 1024. Sequential execution time of 5230.72 s. Conservative mode execution with batch size of 512 and GVT interval of

128. Optimistic simulation restricted to a maximum lookahead of 1
2Δ� , with a batch size of 32, and 128 KPs per PE.

Conservative Optimistic
Nodes Cores Runtime (sec) Speedup Runtime (sec) Speedup

1 2 3084.18 1.70 3224.01 1.62
1 4 1397.29 3.74 1457.20 3.59
1 8 648.34 8.07 679.55 7.70
1 16 315.65 16.57 332.94 15.71
1 32 157.65 33.18 165.90 31.53
2 64 77.33 67.64 81.23 64.39
4 128 40.81 128.16 40.53 129.06

8 256 23.55 222.09 21.43 244.08

16 512 18.12 288.75 13.98 374.11

32 1024 16.37 319.58 16.87 310.00

scheduler is nearly as fast as the conservative event scheduler, and in some cases even faster. Nonetheless, as
seen in Tables 6, 7 and 8, the conservative approach still runs faster than optimistic in most circumstances.
Doryta performs much better with the conservative approach because of the intrinsic lookahead present in

the model. Every single neuron ires at the same virtual time (all heartbeat events are scheduled at the same
virtual timestamps by each LP independently) and each neuron schedules all spikes events for the same virtual
time slot in the future. Because this virtual time slot is encoded as 1

2Δ� from any heartbeat, the simulation
advances at 1

2Δ�-steps virtual time increments. With the optimistic approach, a PE might be too łoptimisticž
and might run ahead too far of this time increment, thus it must rollback all events that were processed outside
the time increment. The solution is to constrain optimism with a maximum lookahead equal to half the virtual
time increment, i.e, an optimistic lookahead of 1

2Δ� (see Elastic Time [70]). This constraint forces the optimistic
simulation to increment at the same virtual times as the conservative simulation does, which makes optimistic
nearly as fast as conservative as seen in Tables 5-8. Every virtual increment step triggers a GVT operation in both
modes. Optimally, the minimum number of GVT operations to be performed in 1000 GoL steps is 4000 (4 per GoL
step). Most conservative simulations utilized 4002 GVT operations while most optimistic 4001. This means that
both conservative and optimistic approaches consume the same number of events per GVT operation.

Other network conigurations such as a fully connected layer might not scale as nicely. The GoL coniguration
scales well because the number of connections each neuron has is small (to its neighbours and itself, 9 at most).
This sparse fan-out feature is an advantage of 2D convolutional connections as opposed to all-to-all connections.

To quantify the performance impact of the tie-breakermechanismÐwhich guarantees a deterministic simulationÐ
we collected parallel simulation performance data for models with and without the tie-breaker enabled as shown
in Table 6. If the initial spike events (determined by the user) do not overlap with any heartbeat event, then the
result of the simulation will be deterministic, i.e., the order in which tied events are processed does not matter in
Doryta, in as much they are the same kind of event. We observe that the simulation slows by a factor of 7 (in
serial execution) when the tie-breaker mechanism is turned on. However, the simulation is only slowed down by
a factor of 1.6 in parallel. This diference between speedups of serial vs parallel hints to the idea that it is the
network which keeps the simulation from running faster.

In general, for any ROSS parallel simulation, if a model does not require the added deterministic guarantee of
the tie-breaker mechanism, it is recommended to disable it and save memory and execution time.
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Table 6. Strong scaling for a simulation of GoL with tie-breaker mechanism deactivated. Randomly initialized GoL grid
with size of 1024 × 1024. Sequential execution time of 674.49 s. Conservative mode execution with batch size of 512 and GVT

interval of 512. Optimistic mode restricted to a maximum lookahead of 1
2Δ� , with a batch size of 64 and 16 KPs per PE.

Conservative Optimistic
Nodes Cores Runtime (sec) Speedup Runtime (sec) Speedup

1 2 687.09 0.98 850.91 0.79
1 4 406.35 1.66 485.64 1.39
1 8 210.84 3.20 250.43 2.69
1 16 109.67 6.15 130.02 5.19
1 32 56.92 11.85 66.96 10.07
2 64 27.90 24.17 33.48 20.15
4 128 15.48 43.58 17.36 38.86
8 256 10.25 65.82 11.06 61.01
16 512 11.28 59.77 11.47 58.82
32 1024 12.10 55.73 14.18 47.57

Table 7. Strong scaling experiments with tie-breaker enabled using GoL with a variable grid size of 1024 (1K), 2048 (2K), 4096
(4K) and 8192 (8K). All simulations used the same parameters as in Table 5

Conservative - Runtime (s)
Grid size

Nodes Cores 1K 2K 4K 8K
1 32 156.53 727.44 3369.99

2 64 77.33 346.97 1560.51 7348.29

4 128 40.81 166.46 737.73 3348.39

8 256 23.55 87.35 356.83 1583.76

16 512 18.12 53.36 187.59 752.83

32 1024 13.50 38.73 113.11 412.18

Optimistic - Runtime (s)
Grid size

Cores 1K 2K 4K 8K
32 165.40 760.66 3544.26
64 81.23 363.97 1652.48
128 40.53 175.18 783.15 3612.13
256 21.43 87.21 378.90 1701.34
512 13.98 47.44 188.71 817.52
1024 14.71 34.37 110.95 416.95

To reduce the overall noise in performance data, we ran the experiments again in the larger grid size conigu-
rations as shown in Table 7. A clear trend can be seen for the 1K case. Optimistic performs better when scaled to
128, 256 and 512 cores. This trend does not appear in higher grid sizes (2K, ...). A variation of this trend appears
as the number of cores increases so that optimistic closes the runtime gap on conservative. At a certain point
optimistic reaches its maximum speedup while conservative takes more cores to reach its maximum speedup.
For the 1K case on conservative, the jump from 32 to 64 cores more than doubles in relative speedup (2.02),

but this does not happen from 64 to 128 (1.89). Thus, the 1K case is the maximally speed-up on 64 cores. For the
optimistic case, the jump from 64 to 128 still more than doubles the speedup (2.004). It is precisely because of the
sustained speedup gain by optimistic that it is capable of closing the gap and runs faster at 128 cores and up. The
same behaviour can be seen in the larger cases: the jump from 128 to 256 cores in the 2K grid size more than
doubles the speedup for optimistic (2.01) but does not for conservative (1.91); the jump from 256 to 512 cores in
the 4K case results in a speedup of 2.01 for optimistic and 1.90 for conservative; and although it does not more
than double the speedup, the jump from 512 to 1024 cores in the 8K case shows a larger positive speedup for
optimistic (1.96) than for conservative (1.83).
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Table 8. Scaling-up experiments to a GoL with grid size of 1024 (1K), 2048 (2K), 4096 (4K) and 8192 (8K). Tie-breaker of. All
runs used the same parameters as in Table 6

Conservative - Runtime (s)
Grid size

Nodes Cores 1K 2K 4K 8K
1 32 53.99 244.05 1046.32 4444.65
2 64 27.90 122.55 518.54 2188.58
4 128 15.48 62.82 261.94 1090.15
8 256 10.25 34.99 135.33 548.34
16 512 11.28 25.91 79.24 291.30
32 1024 12.10 27.06 61.60 189.33

Optimistic - Runtime (s)
Grid size

Cores 1K 2K 4K 8K
32 68.32 299.67 1265.32 5280.50
64 33.48 150.32 624.01 2618.48
128 17.36 75.46 314.54 1311.06
256 11.06 41.13 163.88 658.24
512 11.47 28.97 93.75 349.90
1024 14.18 29.92 72.88 222.02
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Grid Size/PEs

Grid size 1K/16 2K/64 4K/256 8K/1024
% remote events 0.640 1.278 2.597 5.203

Fig. 9. Weak scaling on 16, 64, 256 and 1024 MPI ranks. Let, tie-breaker enabled; right, tie-breaker disabled.

Disabling the tie-breaker mechanism erases optimistic’s performance advantage, see Table 8. Notice that a 2K
grid is four times larger than a 1K grid, thus the simulation should take four times as much, but at 1024 cores the
2K grid takes less than 3 times the 1K grid time, while at 32 cores is larger than 4 times. With 32 cores, the 8K
grid takes 82.33 times what the 1K grid takes to run, although it should be 64. This suggests that 1K case is far
too small to fully utilize 1024 cores.
Cutting across the strong scaling-up experiments from Tables 7 and 8, we can derive two sets of weak

scaling experiments, see Figure 9. The largest experiment, 8K, utilized a total of 200 million neurons (# cells ×
# neurons per cell = 81922×3) and simulated a total of 2000 virtual clock steps (heartbeat steps) in 412.18 seconds
with the tie-breaker mechanism activated, and 222.02 seconds without tie-breaker. Conway’s Game of Life weakly
scales with very little overhead (around 5% to 15%) except for the 8K/1024 non tie-breaker case, which might have
been an exception (due to possible interference with other jobs scheduled at the supercomputer). The overhead
of 5 to 15% is partially due to the doubling of neighboring connections relative to total neurons per between MPI
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Conservative Optimistic
Slots Runtime GVT ops Runtime (s) GVT ops
1 154.96 4077 166.48 4001
3 157.26 8000 166.54 4001
7 158.02 15996 166.51 4001
15 160.41 31988 166.52 4001
31 164.01 63972 166.37 4001
63 171.49 127940 166.24 4001
127 187.26 255876 166.14 4001
255 217.82 511748 166.15 4001
511 281.76 1023492 166.42 4001
1023 399.72 2046980 165.88 4000

Fig. 10. Thinning intrinsic lookahead present in Doryta models. The number of slots indicates the number of possible virtual
times between two heartbeats that a spike event can be scheduled to.

Table 9. Performance data across four possible configurations on 64 cores: conservative vs optimistic modes, and tie-breaker
activated vs deactivated.

Tie-breaker No tie-breaker
Stat Conservative Optimistic Conservative Optimistic

Events processed 1875038719 1875039282 1875038719 1875038719
PE event ties 0 0 1875038719 1875038719

Events rolled back - 563 - 0
Runtime (s) 77.33 81.23 27.90 33.48

Num GVT calculations 4002 4001 4002 4001
GVT time (s) 28.34 29.30 13.54 16.92

Fossil collect time (s) - 6.34 - 4.00
Event processing time (s) 44.38 45.18 11.07 11.47

ranks. This means that number of remote events per MPI rank doubles as the width of the rows increases by a
factor of two (The 1K/16 and 2K/64 cases have the same number of neurons/LPs, but the second has twice the
number of connections to other PEs).
Conservative outperforms optimistic because of the intrinsic lock-stepped fashion in which the NN model

advances with at most two GVT operations to inish a neuron cycle. In other words, conservative is capable of
advancing the simulation between two GVT operations as eiciently as optimistic can when no backtracking
is needed. Figure 10 shows how reducing the amount of work performed in between GVT operations erases
conservative’s advantage over optimistic. For this, instead of scheduling spike events precisely in between
heartbeat events, i.e, shifted by 1

2Δ� of heartbeats, we schedule them to 1
2�Δ� increments of the heartbeats, where

� ∈ Z
+. When � = 2, there are 3 slots in which a spike could be scheduled (now + 1

4 , now + 2
4 and now + 3

4 ). The
more slots there are, the more GVT operations conservative has to perform. At 1023 slots (� = 10), conservative
performs 2 × 106 GVT operations.
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Table 10. Cache memory performance data for conservative and optimistic modes running in Intel Xeon Gold 5218R. Cache
hits are always higher for conservative than optimistic.

Conservative Optimistic

Cores
Runtime

(s)
Event

Processing (s)
L2 Hit
Rate

L3 Hit
Rate

Runtime
(s)

Event
Processing (s)

Fossil
Collect (s)

L2 Hit
Rate

L3 Hit
Rate

2 680.07 555.07 44% 44% 767.23 574.93 82.13 39% 38%
4 334.99 268.66 46% 38% 381.23 276.55 43.05 41% 32%
8 167.60 131.11 49% 31% 190.91 135.37 22.54 43% 24%
16 88.99 67.52 52% 25% 102.12 70.26 12.17 46% 20%

Table 11. Average total number of integration and fire operations utilized on the inference of a black & white, 28 × 28 image
from MNIST and Fashion-MNIST datasets. Accuracy of each network on their respective dataset: Small and Large LeNet on
MNIST and Fashion-MNIST.

Workload Integration Fire Accuracy
Small LeNet 73734.31 733.94 96.36%

Small LeNet Fashion 104355.97 1180.18 67.12%
Large LeNet 296092.07 965.04 98.14%

Large LeNet Fashion 534441.86 1793.55 70.06%

One might think that conservative outperforms optimistic because of rollbacks, but this hypothesis is disproved
once we look at runtime with the tie-breaking mechanism turned of, see Table 9. Notice that optimistic never
rolls back and performs one less GVT operation than conservative, yet it is signiicantly slower. Observe that
fossil collect and event processing times are the main culprits for optimistic’s slower runtime. Table 10 shows
that the cache hit rate on an Intel Xeon 20 core processor for both optimistic and conservative event scheduling
approaches. We observe that conservative has a higher L2 and L3 cache hit rate than optimistic, which results in
slower execution time for optimistic event processing. The conservative approach’s cache performance behavior is
attributed to memory used by events being reclaimed immediately after events are processed, while in optimistic
event processing, memory is only reclaimed after GVT is performed during fossil collection. We hypothesize
most of the runtime diference to be a result of cache misses.

6 Related Work

Our performance estimation of spintronic materials work builds upon Nikonov and Young’s [53], but instead of
assuming a generic SNN workload, we have generated workloads via simulation. Through this, we have been
able to observe that diferent workloads (MNIST vs Fashion-MNIST) do not have signiicant device performance
diferences, although diferent workloads are associated with models with diferent accuracy. We conirmed the
suspicion that the shape of the network has the largest impact on performance. Larger models (e.g., more layers)
use more energy, space and have higher latencies. Additionally, we also studied the efects of interconnect wire
width and found an optimal size for our scenarios.

The spintronic properties of device materials are good emulators of spiking neurons, yet others device types
exist. These include memristors [63, 82] and photonics [34, 73]. What makes antiferromagnetic materials attractive
is the very low critical currents at which they can be excited and the possibility to build them with existing
technologies. An important observation from our performance estimation analysis is that interconnects take up
the bulk of the energy consumption of the network. A similar observation has been found in biological brains. In

ACM Trans. Model. Comput. Simul.



Performance Evaluation of Spintronic-Based Spiking Neural Networks using Parallel Discrete-Event Simulation • 25

mammalian brains, communication between neurons consumes one to two orders of magnitude more energy
than computation itself [44].
Since the advent of neuromorphic computing in 1990 [48], research in the area has grown to thousands

of articles [64] ranging from theory [10] and simulation (Brian [30] and NEST [32]) to production hardware
implementations by established chip manufactures like Intel and IBM with the Loihi [20] and TrueNorth [14]
chips, respectively. A key research challenge arises from these novel chips, namely: how to address future design
trade-ofs as well integrate them into larger computing systems? A central approach for addressing this challenge
is modeling and simulation [9, 79].
NeMo4 [61] is an early massively parallel neuromorphic simulation framework. As mentioned in Section 4,

NeMo’s ability to simulate the TrueNorth chip makes it inlexible. While NeMo and Doryta are both built as
PDES models, utilizing the ROSS parallel simulation engine [11], only Doryta takes advantage of the lock-stepped
synchronization of SNNs to speedup the simulation by constraining optimistic lookahead which can be seen as
a special case of the Elastic Time algorithm [71]. Discrete-event simulation (DES) of spiking neurons is not a
recent development. Watts [78] observed that the performance of spiking neuron simulations could be improved
if event-driven simulation was used instead of a purely time-stepped approachd. We observe a similar speed-up
gain in Doryta simulations when using Doryta’s spike-driven mode. DES has not only been used to speed-up
simulations but also to increase the accuracy of simulation results. Such is the case with Pimpini et al. [59], who
developed a PDES simulation in ROOT-Sim [56] (ROme OpTimistic Simulator, a Time Warp-based simulator
framework) with the express purpose of achieving a higher simulation accuracy. However, a key departure from
their work and ours is that Doryta was built as a tool to trace neuron behaviour such as iring of synapses.
Additionally, Boulet et al. [5] implemented N2S3 which is an SNN simulator written in Scala using an actor
model-based library. DES and the actor model are similar in that the model computation is divided into pieces
and is advanced through the use of messages, yet the actor model lacks the notion of virtual time which is central
to advancing DES models computations. We additionally observe that N2S3 runs on top of the Java Runtime
Environment without any parallelization library such as the use of MPI for communication, making it unsuitable
for execution on modern HPC systems.

Although plenty of SNN models could be simulated by Doryta, loading them requires custom made handlers.
We have implemented a translation procedure to take models trained with Whetstone [66] into a binary format
that Doryta understands. Building custom translation procedures is expensive. An approach to make Doryta
more accessible is to expose it as a backend SNN simulator for other frameworks such as PyNN [21]. This is
precisely what Pimpini [58] is working on their ROOT-Sim-based SNN simulator. We consider PyNN integration
future work.

7 Conclusion

In an analysis of two spintronic-neuronmodels, Mn3Sn and NiO, we found that the bulk of the energy consumption
of the chips would be driven by the connection between neurons and not the neurons themselves, the interconnect.
Compared to CMOS, our analysis indicates that spintronic-based chips have an energy-delay product that is three
to six orders of magnitude smaller at inferencing a single image using LeNet. We have also presented Doryta,
a parallel discrete-event-based, chip-agnostic simulator for neuromorphic applications, which we applied to the
energy estimation of novel spintronic-based devices. We observed that Doryta can be scaled up to over 1,000
CPU cores. Doryta simulated a sparse 200 million neuron model for a total of 2000 virtual clock steps in under
four minutes using 1,024 CPU cores. Additionally, Doryta is able to reproduce the inference results of another
spiking-neural network library, Whetstone, with one key advantage: it takes into account time information

4Not to be confused with NeMo 2009 [23], a GPU-based simulation framework for SNNs.
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and delays. It was through loading Whetstone’s models into Doryta that could determine the workloads that
spintronic-based chips would require in terms of basic operations.
As future work, we plan to incorporate the cost associated with peripheral circuitry and transducers or

ampliiers that are needed in a working chip. We plan to look into ferromagnetic based spiking neurons due to
their ease of fabrication and characterization in the GHz regime as opposed to THz for spintronics. Since we
found that interconnects are the bottlenecks, we see an interesting avenue for research in the improvement of
interconnects. Finally, as for Doryta, we intend to implement further non-ML applications using SNNs such as:
digital circuits, RAM, and a fully-ledged computer digital computer; and, make Doryta a supported simulator by
PyNN.
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[81] J Železnỳ, P Wadley, K Olejník, A Hofmann, and H Ohno. 2018. Spin transport and spin torque in antiferromagnetic devices. Nature

Physics 14, 3 (2018), 220ś228.
[82] Mohammed A. Zidan, John Paul Strachan, and Wei D. Lu. 2018. The Future of Electronics Based on Memristive Systems. Nat Electron 1,

1 (Jan. 2018), 22ś29. https://doi.org/10.1038/s41928-017-0006-8

ACM Trans. Model. Comput. Simul.

https://doi.org/10.1109/MCAS.2013.2296414
https://arxiv.org/abs/1705.06963
https://doi.org/10.1145/224401.224705
https://doi.org/10.1145/280265.280267
https://doi.org/10.1145/280265.280267
https://doi.org/10.1038/s41598-017-07754-z
https://doi.org/10.1038/s41598-017-07754-z
https://doi.org/10.1002/smsc.202000025
https://doi.org/10.1103/PhysRevLett.109.137201
https://doi.org/10.1038/s41928-017-0006-8


30 • E. Cruz-Camacho, et al.

Received 21 November 2022; revised 24 December 2023; accepted 4 February 2024

ACM Trans. Model. Comput. Simul.


	Abstract
	1 Introduction
	2 Background
	2.1 Spiking Neural Networks
	2.2 Spintronics Neurons and Synapses
	2.3 Parallel Discrete-Event Simulation

	3 Physical Performance Estimation of Spintronic Materials
	3.1 Antiferromagnetic Neurons
	3.2 Ferromagnetic Synapses
	3.3 Interconnects
	3.4 Chip-level benchmark

	4 Doryta: Simulating Spiking Neural Networks
	4.1 Implementation Details
	4.2 Neuromorphic application: Conway's Game of Life and Turing Completeness
	4.3 Neuromorphic Application: MNIST Classification

	5 Experimental Results
	5.1 Hardware Performance Estimation
	5.2 Parallel Performance Experiments - Strong Scaling

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

