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ABSTRACT
Neuromorphic computing is a rapidly evolving technology that
attempts to leverage the power of biological neural networks in
highly efficient architecture. Current hardware implementations
show great promise in solving computational problems using a frac-
tion of the power of a traditional von Neumann hardware. As the
number of applications using neuromorphic processors increases,
so too does the interest in creating better performing neuromor-
phic architectures to run them. Determining viable architectures
for the next generation of brain-like computers requires analysis
of the architecture’s performance. We have developed a generic
neuromorphic hardware architecture simulator, NeMo, that runs on
top of a Parallel Discrete Event Simulator known as Rensselaer’s
Optimistic Simulation System (ROSS). NeMo allows for neuromor-
phic architecture and models to be simulated in massively parallel
systems as well as standard desktop architecture.

In this work, we introduce enhancements to NeMo that extend
its modeling capability and utility. We present a dynamic configura-
tion that allows for custom input model definitions including those
designed to run on TrueNorth and IBM’s designated simulator,
Compass. Leveraging recent additions to the underlying simulation
system, ROSS, we have implemented a detailed data capture mecha-
nism that allows for deep analysis of novel neuromorphic hardware
and software models. Bringing this functionality into NeMo allows
for deeper analysis of the performance of simulated architectures
and neuromorphic models.
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1 INTRODUCTION
A new class of processing technology, Neuromorphic Computing,
has recently been gaining a great amount of interest. This class
of processor provides a flexible and high performance way to im-
plement complex neural network computations in a very efficient
manner. For example, the IBM neuromorphic processor, TrueNorth,
can compute complex classification and segregation tasks at a frac-
tion of the power required to run a full von Neumann processor[5].

The TrueNorth architecture consumes ≈65 mW of power when
running a multi-object image classification using real-time video in-
put (400 × 240 @ 30 fps)[8]. Other neuromorphic hardware designs
feature similar power to performance ratios[7][2]. The low power
requirements coupled with excellent machine learning tools make
this emerging hardware extremely attractive for many applications,
ranging from embedded systems to high performance computing
clusters.

With this surge of interest comes a greater number of researchers
looking to develop applications that run on neuromorphic hard-
ware. To aid in this process, neuromorphic chip designers have
been releasing development tools and hardware simulation appli-
cations. For example, IBM has released a complete tool-chain that
includes development software and a spike-accurate simulation of
the TrueNorth hardware [11]. Furthermore, neuromorphic hard-
ware architecture research is ongoing, and new processor designs
are actively being designed and prototyped.

Given the growing interest in neuromorphic hardware, the need
for hardware agnostic and open-source neuromorphic hardware
simulation is also growing. For example, the TrueNorth develop-
ment kit works to develop on the TrueNorth neuromorphic proces-
sor, while more general simulators such as the BRIAN simulator[3]
allow for large scale spiking neural network simulation without
hardware constraints. In addition to developing new applications,
there is a growing need for a way to prototype next-generation
neuromorphic architectures to gauge design performance prior to
manufacturing[4].

To address this need, we presented NeMo [9], a spike-accurate
general neuromorphic architecture simulation model built on top
of Rensselaer’s Optimistic Simulation System (ROSS)[1]. NeMo is
an event-driven neuromorphic processor architecture model that
features parallel execution with optimistic event scheduling[6] and
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reverse computation via ROSS. NeMo allows simulation of various
spiking neuronmodels alongwith various hardware designs. Strong
scaling performance runs of the model on up to 2048 Blue Gene/Q
nodes have been completed with a peak performance of ten billion
neurosynaptic events per second[9].

Getting useful information out of the simulation will be a crucial
part of the research and development of next-gen architectures. A
recent feature of ROSS provides support for event tracing, enabling
the collection of high resolution model data[10]. Using this fea-
ture, we have enhanced NeMo to allow for information about the
model to be collected during the simulation. This opens up another
dimension of custom model analysis beyond the basic simulation
statistics. The richer analytics allow for the possibility of deeper
understanding of the strengths and weaknesses of a given model.

Early versions of NeMo did not have any form of model input
and required the neurosynaptic model to be programmed during
implementation. We have extended the model to support generic
model definitions, specified through a simple file format. Further-
more, we developed tools that convert TrueNorth neurosynaptic
model definitions used in the IBM neuromorphic ecosystem to
NeMo compatible model configuration files.

The main contributions of this work are expanding the func-
tionality of NeMo to allow for custom model definitions and the
conversion of IBM TrueNorth model definitions to NeMo configu-
rations. We have also integrated the custom in-simulation ROSS in-
strumentation for model analytics into NeMo that can be expanded
to further aid in future architecture and model analysis.

2 IMPLEMENTATION
NeMo is built using Rensselaer’s Optimistic Simulation System
(ROSS). ROSS provides NeMo with a framework for running par-
allel discrete event-driven simulations in either optimistic or con-
servative synchronization modes that ensure event causality is
maintained across processing environments. NeMo is able to take
advantage of the optimistic scheduling mode which provides excel-
lent scaling and performance when simulating large neuromorphic
hardware models.

2.1 Model Input
To give NeMo the ability to model generic neuromorphic hardware,
we developed a configuration file format that defines the model
and neuron parameters. The configuration must allow for both
neuron configuration, input spikes, and dynamic neuron behaviors.
Given these requirements, NeMo’s configuration file is composed of
a subset of the Lua scripting language, which provides a dynamic
way to introduce new hardware configurations along with per-
neuron behavior specifications.

We tested the accuracy of NeMo using the TrueNorth develop-
ment kit. Using a script, we were able to convert the TrueNorth
model definition file into a NeMo compatible configuration file.

2.2 Visualization
NeMo provides a platform to model novel neuromorphic architec-
ture. Given the growing interest in new neuromorphic hardware
designs, getting valuable information about the performance of
novel architecture models will be a crucial tool to optimizing the

performance of next-generation hardware. Using the event tracing
functionality provided by ROSS, we are able to collect fine grained
data from neuron behavior and activity within the simulation. This
information can be compiled to better understand how activity
flows through the network and recognize possible flaws in the
model.

Because of the potential size of the data being collected, visual
analysis is an effective approach to quickly analyzing model be-
havior. The in-simulation instrumentation is typically a large data
dump that must be analyzed after the simulation. For example, one
might specify to collect information on whether a neuron fired
or not as a result of a received spike. This information would be
collected by every neuron in the simulation and for every spike
event that was processed. Running with this collection produces a
large quantity of spiking information that can be visualized using
a heatmap, showing the distribution of activity across the network
over time.

3 RESULTS AND CONCLUSION
We have evaluated the NeMo simulator and validated its accuracy
with that of the TrueNorth chip and its Compass simulator. We can
run a benchmark MNIST classification task on each using the same
input files. The parameters of the application include 5 TrueNorth
corelets with varying neuron populations across them.

We have also implemented a proof of concept of ROSS instru-
mentation with our NeMo simulator. At the moment this includes
simply saving a single part of the neuron state away at intervals
during the simulation but this can easily be expanded to incorporate
information about neurons, axons, and synapses.

In summary, we anticipate a growing need for quick prototyping
of novel neuromorphic architectures. NeMo was designed to fit
the role of not only a TrueNorth simulator but also a simulator of
arbitrary neuromorphic computing architectures - including those
that haven’t yet been designed. It has the flexibility of being run
on consumer grade hardware as well as supercomputer clusters.
The additional insight that NeMo is able to give developers and
architects through its use of ROSS instrumentation brings another
valuable feature to improving current neuromorphic architectures
for the design of future hardware.

4 FUTUREWORK
To build off of these newly implemented features of NeMo, we can
design a default set of parameters for data collection for general
performance analysis. This would allow for an apples-to-apples
comparison of different neuromorphic architectures. Expanding on
that, we plan to compare and contrast the performance of existing
architectures using NeMo and observe how modifying architecture
specifications affects performance.
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