
CODES-TRACER TUTORIAL

erhtjhtyhy

NEIL MCGLOHON
PhD Student Researcher
Department of Computer Science
Rensselaer Polytechnic Institute

Adapted from N. Jain and M. Mubarak’s slides for HOTI2017

ENABLING HPC DESIGN SPACE EXPLORATION VIA DISCRETE-EVENT SIMULATION

NIKHIL JAIN
Compute Architect
NVIDIA

LINKS

§ Slides available for download at:
– http://nikhil-jain.github.io/codes-hoti.pptx

§ QoS Slides available for download at:
– https://nmcglo.com/public-talks/df-dfp-qos-isc19.pdf

§ CODES Repo and Wiki:
– https://github.com/codes-org/codes

§ Tracer Repo:
– https://github.com/LLNL/TraceR

§ NERSC DOE Design Forward DUMPI Traces:
– https://portal.nersc.gov/project/CAL/designforward.htm

2

http://nikhil-jain.github.io/codes-hoti.pptx
https://nmcglo.com/public-talks/df-dfp-qos-isc19.pdf
https://github.com/codes-org/codes
https://github.com/LLNL/TraceR
https://portal.nersc.gov/project/CAL/designforward.htm

TUTORIAL OUTLINE

§ Session I: Introduction to CODES and TraceR, and their use for simulations

§ Session II: Replaying HPC workloads, simulating MPI operations and collectives

§ Session III: Storage simulations, Misc

3

PROJECT CONTRIBUTORS

4

§ Argonne National Laboratory, Mathematics and Computer Science
§ Lawrence Livermore National Laboratory, Center for Applied Scientific Computing
§ Nvidia, Compute Arch
§ Rensselaer Polytechnic Institute, Computer Science
§ University of Arizona, Computer Science
§ UC Davis, Computer Science
§ University of Maryland, Computer Science

SESSION I: INTRODUCTION, CASE STUDY, AND
INTERCONNECT MODELS

5

GOALS OF SESSION I

§ Introduction
§ Case study
§ Features
§ HPC Interconnect models
§ Configuring interconnect simulations
§ Interpreting simulation output

6

INTRODUCTION & BACKGROUND

7

BUILDING BLOCKS OF HPC INTERCONNECTS

§ HPC performance is sensitive to the interconnect latency
§ Interconnects are custom built to achieve maximum throughput
§ Basic Components:

– Network topology: Arrangement of network nodes and links to maximize
performance.

– Routing: The protocol using which a packet selects its next destination.
Depends on the underlying network topology.

– Flow control: Allocating network links and buffers to packets as they traverse
through the network. Usually independent of the underlying topology and
routing protocols.

8

WHY HPC INTERCONNECT SIMULATION?

§ HPC interconnects are complex!
§ Need to look at several factors that influence network performance:

– Interconnect Topology
– Routing
– Quality of Service
– Job placement policies
– Inter-job and intra-job interference
– Storage placement on network

§ Improved performance is contingent on an optimal combination of the above
factors

9

ROSS: PARALLEL DISCRETE-EVENT SIMULATOR
§ Discrete event simulation (DES): a

computer model for a system where
changes in the state of the system occur
at discrete points in simulation time

§ Parallel DES allows execution of
simulation on a parallel platform

§ Rensselaer Optimistic Simulator System
(ROSS) provides PDES capability for
CODES
– Optimistically schedules events.

Rollback realized via reverse
computation

– Logical processes (LPs) model state
of the system

10

����

�����

������

��� ��� ��� ���� ���� ���� ����� ����� �����

�
��
��
��
��
��
��
��
��
��
�

��������������������������

���

��������
����������������

������������������

CODES: MODELING & SIMULATION FRAMEWORK
§ Accelerate HPC system co-design by

providing a detailed simulation of
HPC interconnects, storage,
workloads and surrounding
environment

§ Couple best-of-breed parallel discrete
event simulation with experts in
interconnects and storage architecture
design

§ Incrementally develop HPC simulation
capability, validating approach and
components along the way

§ Complement experimentation on real
systems Figure: CODES Architecture Diagram

11

TRACER: REPLAYING MPI TRACES

§ OTF2 traces for MPI
§ BigSim traces for Charm++, AMPI
§ Default and user-defined job placement and task mapping
§ MPI point-to-point semantics and protocols
§ Inbuilt collectives: tree based bcast, reduce, allreduce, and barrier; message size

based algorithms for alltoall and allgather
§ Simulation time scaling

12

FEATURES: HPC SIMULATIONS
§ Packet-level simulations of HPC interconnect topologies
§ Trace-driven analysis (DUMPI+OTF2), synthetic workloads
§ Multiple jobs can be replayed on the network
§ Different job placement schemes can be used
§ Multiple ranks mapped to network nodes can be used
§ Detailed statistics generation
§ MPI collective operations can be simulated
§ General purpose storage model that uses concurrent, pipelined RDMA

read/write requests (simulating burst buffers/SSD)

13

SIMULATION STACK

14

OTF2

TraceR

CODES System Models

BigSim OthersDUMPI

Synthetic
workloads

ROSS

MPI Simulation
layer

Any machine with MPI support

Comm
Patterns Workloads: Session II

System Models in Session I & III

HPC INTERCONNECT MODELS

15

STRUCTURE OF MODERN INTERCONNECT
TOPOLOGIES

16

A 3-ary 3-d Torus network
A 3-level pruned Fat Tree with 64 compute nodes

Torus Network
• Homogeneous structure
• Dedicated routers per compute node

Fat tree Network
• Static Routing
• Job placement impacts

inter-job interference

Dragonfly Class
Networks
• Groups with All-To-All

Global Connections
• Flexible Routing
• Strong resilience to

inter-job interference

Slim Fly Network
• Cost-Effective
• Low-Diameter-High-

Path-Diversity
• Complex Global

Link Structure

A 7 Group Dragonfly

An 8 Group Slim Fly

OVERVIEW OF NETWORK MODELS

§ Multiple network models are supported – 1D/2D Dragonfly, Megafly, Slim Fly, Fat
Tree, Express Mesh, Arbitrary graphs, Torus…

§ Abstraction layer ‘model-net’ sits on top of network models
– Breaks messages into packets
– Offers FIFO, round robin and priority queues

§ To try different networks, simply switch the network configuration files!
§ Storage models, MPI simulation and workload replay layers are independent of

the underlying networks

17

SIMPLE NET NETWORK MODEL

§ A latency/bandwidth model where message is directly sent from source to
destination

§ Uses infinite size queuing
§ Easy setup– uses a startup delay and link bandwidth for configuration
§ Mostly for debugging/testing purposes-- Can be used as a starting point when

replaying MPI traces
§ It can be used as a baseline network model with no contention and no routing

18

CONFIGURING SIMPLE-NET LOGP MODEL

19

For mapping entities on ROSS MPI
processes

Messages are broken into packets
by the model-net layer

ROSS specific parameter (event size)

Startup delay in ns

Link bandwidth in MB/s (one link
between each pair of nodes)

Configuration file can be found in codes/tests/conf/modelnet-test.conf

RUNNING A SIMPLE-NET LOGP MODEL

§ ./tests/modelnet-test --sync=1 -- tests/conf/modelnet-
test.conf

§ A simple test in which a simulated MPI rank sends message to the next rank,
which replies back

§ Continues until a certain number of messages is reached

20

DRAGONFLY NETWORK MODEL

§ Multiple forms of routing are supported: minimal, adaptive, non-minimal and
progressive adaptive

§ Packet based simulation with credit based flow control
§ Uses multiple virtual channels for deadlock prevention

21

g19

g0

g1
g2g3g4

g5

g6

g7

g8

g9

g10

g11
g12 g13 g14

g15

g16

g17

g18

Dragonfly group Dragonfly group
R0 R1 R2 R3 R4

R5 R6 R7 R8 R9

R10 R11 R12 R13 R14

A Cray XC style dragonfly group

r07

r00

r01

r02

r03
r04

r05

r06
c000

c001

c002

c003

c010

c011

c012

c013

c020

c021

c022

c023

c030

c031

c032

c033

c040
c041c042

c043

c050

c051

c052

c053

c060
c061 c062

c063
c070

c071

c072

c073

Dragonfly group as proposed by Kim, Dally et al.

CONFIGURING DRAGONFLY NETWORK MODEL

22

nw-lp is a simulated MPI
process

A simulated dragonfly
network node

A simulated dragonfly
network router

• For simulating multiple MPI processes per node à nw-lp=num-procs * number
of network nodes

• Self messagesà messages sent to the same network node
• Overhead for sending self message can be configured

Configuration file can be found in codes/src/network-
workloads/dragonfly-custom

CONFIGURING DRAGONFLY NETWORK MODEL

23

Router arrangement within a group.
Should match the input network
configuration

Buffer size of virtual channels can be
configured

Number of compute nodes per router
is configurable

Network configuration files – can be
custom generated (see scripts/gen-
cray-topo/README.txt).

RUNNING A DRAGONFLY NETWORK
SIMULATION
§ Download the traces:

– wget https://portal.nersc.gov/project/CAL/doe-miniapps-
mpi-traces/AMG/df_AMG_n1728_dumpi.tar.gz

§ Run the simulation:
– ./src/network-workloads/model-net-mpi-replay --sync=1 --
disable_compute=1 --workload_type="dumpi" --
workload_file=df_AMG_n1728_dumpi/dumpi-
2014.03.03.14.55.50- --num_net_traces=1728 --
../src/network-workloads/conf/dragonfly-custom/modelnet-
test-dragonfly-edison.conf

24

FAT TREE NETWORK MODEL

25

Full 3-level k=8 Fat-Tree with 128 compute nodes

§ Can simulate two and three level fat tree
networks

§ Width of the tree (number of pods) can also
be configured

§ Two forms of routing are supported:
– static: uses destination-based look-up

tables
– adaptive: selects least congested output

port
§ Packet based simulation with credit based

flow control

FAT TREE NETWORK CONFIGURATIONS

26

SC’17, Nov 12–17, Denver, CO, USA

a) Single rail single plane (full) b) Single rail single plane (tapered) c) Dual rail single plane d) Dual rail dual plane

Figure 1: Examples of design options for fat-tree networks.

�e primary contributions of this work are:

• Advances in TraceR/CODES framework that enable low-e�ort,
accurate simulations of production applications.

• Validation of TraceR/CODES framework for many parallel
codes including production applications.

• Performance and interference predictions for production ap-
plications, libraries, and multi-job workloads on a range of
potential future network designs.

We also assess the suitability of di�erent fat-tree con�gurations
for the applications and workloads simulated in this paper. Note
that the choice of test problems can potentially alter the character-
istics of many applications, and hence some of the results presented
may not apply for test problems that signi�cantly alter the behavior
of an application.

2 FAT-TREE NETWORKS
�e fat-tree topology is a tree-based topology in which bandwidth
of edges increases near the top (root) of the tree [29]. Practical
deployments of fat-tree in most supercomputers resembles folded-
Clos topology as shown in Figure 1(a). In this set up, many routers of
same radix are grouped together to form core switches and provide
high bandwidth. �e fat-tree shown in Figure 1(a) is a full fat-tree:
the total bandwidth within a level does not decrease as we move
from nodes connected to the leaf switches towards higher levels.

In order to reduce the cost of the network, tapering can be de-
ployed to connect more nodes per leaf switch (Figure 1(b)). �is
reduces total bandwidth at higher levels but also lowers the number
of switches and links required to connect the same number of nodes
in comparison to the full fat-tree.

On the other hand when higher bandwidth is desired, each node
can be provided multiple ports (rails) to inject tra�c at a higher rate
into the leaf switches. �e multiple ports can either be connected
to switches in the same plane as shown in Figure 1(c) or to disjoint
planes as shown in Figure 1(d). In both cases, fewer nodes can
be connected using the same quantity of network resources in
comparison to the single rail fat-tree. Either of these con�gurations
can also be tapered to retain high injection bandwidth at the nodes,
but reduce cost by reducing the bandwidth at the higher levels.

Currently, all of the above con�gurations are o�ered by multiple
vendors, e.g. Mellanox and Intel. In addition, several options are
available for bandwidth of individual links – FDR (56 Gbps), EDR
(100 Gbps), HDR (200 Gbps), etc. Multiplicity of these optionsmakes
the task of �nding the most suitable con�guration for HPC centers
and applications di�cult. We address this challenge by showing that

Table 1: Fat-tree con�gurations currently available.

Con�g Link bandwidth #rails #planes Tapering

SR-EDR 100 Gbps 1 1 1:1
DRP-T-EDR 100 Gbps 2 2 2:1
DRP-EDR 100 Gbps 2 2 1:1
SR-HDR 200 Gbps 1 1 1:1
DR-T-HDR 200 Gbps 2 1 2:1
DR-HDR 200 Gbps 2 1 1:1

simulations of applications on available con�gurations (Table 1)
can provide key insights and reliable data points critical to this
decision making process.

3 APPLICATION CHARACTERISTICS
In this section, we brie�y describe the codes used in this study
and analyze their communication characteristics. �e motivation
for such an analysis is two-fold. First, it helps understand the
performance trends observed for various codes on di�erent network
con�gurations. Second, it can be used to �nd generic trends in
impact of network con�gurations based on speci�c results observed
for di�erent applications.

�e codes used in this study include applications and libraries
that are either run in production at HPC centers (Hypre, Mercury,
MILC, ParaDiS, pF3D, Qbox), or represent codes runs in production
(Atratus). �ese codes span a wide range of physics and mathe-
matical domains including Monte Carlo, �rst-principles molecular
dynamics, transport, plasma interactions, structure and unstruc-
tured grids, and sparse linear algebra.
Hypre [21] is a parallel linear solver library developed at LLNL
and is used by many production applications. For this study, we use
the Algebraic Multigrid (AMG) Solver on a 2D di�usion problem
using structured Adaptive Mesh Re�nement (AMR). We ran a weak
scaling problem so the number of mesh points is proportional to
the number of MPI ranks. �e tests were set up within a larger
application code but tracing was limited to the operations taking
place during the Hypre setup and solve phases.
Atratus extendsMULARD [6], a high order, �nite element based 3D
unstructured mesh multigroup radiation di�usion code, by includ-
ing more advanced physics and discretizations. It is used primarily
as a research tool to explore future programming paradigms with
data �ow and computations important to LLNL applications. Atra-
tus uses MFEM [5] which invokes Hypre solvers but they are more

2

§ Tapering can be used to connect more nodes to the leaf switches
– Reduces the bandwidth, switches and links at higher level

§ To get higher bandwidth, nodes can connect to multiple ports (multi-rail) in one
or more plane (multi-plane)
– These configurations can also be tapered to reduce switches, links at

higher levels
§ Model supports configurations for multiple rails, multiple plane and tapering

CONFIGURING FAT TREE NETWORK MODEL

27

Nw-lp is a simulated MPI
process

A simulated fat tree
network node

Three simulated fat tree
network switches (one in
each level of the network)

CONFIGURING FAT TREE NETWORK MODEL

28

Switch arrangement
should match the input
network configuration

Switch radix can be
configured

Static routing requires precomputed
destination routing tables
See:
https://github.com/codes-
org/codes/wiki/codes-
fattree#enabling-static-routing

SLIM FLY NETWORK MODEL

29
Fig. Slim Fly with q=5

§ Topology of interconnected router groups built with MMS graphs
§ The max network diameter is always 2
§ Packet based simulation with credit based flow control
§ Multiple forms of routing are supported:

– minimal: 2 virtual channels
– non-minimal: 4 virtual channels
– adaptive: 4 virtual channels

0,0,0#
 #
 #

0,0,3#
 #
 #

0,0,1#
 #
 #0,0,2#
 #
 #

0,1,0#
 #
 #

0,1,3#
 #
 #

0,1,1#
 #
 #0,1,2#
 #
 #

0,2,0#
 #
 #

0,2,3#
 #
 #

0,2,1#
 #
 #0,2,2#
 #
 #

0,3,0#
 #
 #

0,3,3#
 #
 #

0,3,1#
 #
 #0,3,2#
 #
 #

0,0,4#
 #
 #

0,1,4#
 #
 #

0,2,4#
 #
 #

0,3,4#
 #
 #

0,4,0#
 #
 #

0,4,3#
 #
 #

0,4,1#
 #
 #0,4,2#
 #
#

0,4,4#
 #
 #

CONFIGURING SLIM FLY NETWORK MODEL

30

Generator sets are set of
indices used to calculate
connections between routers in
the same subgraph. They must
be precomputed.

Router arrangement within a
group.

HYPER-X, EXPRESS MESH, AND TORUS

§ Express Mesh: low-diameter densely connected
grids
– Allows for specifying connection gap
– Gap = 1 -> HyperX

§ Torus: based on a n-dimensional k-ary network
topology
– Number of torus dimensions and length of each

dimension can be configured
– Supports dimension order routing

§ Uses bubble escape virtual channel for deadlock
prevention

31

ARBITRARY GRAPHS

§ Can also input arbitrarily connected graphs
– Defined using DOT format

§ Static routing is required
– Generated using OpenSM, courtesy Jens Domke

32

INTERPRETING SIMULATION OUTPUT

33

INTERPRETING SIMULATION OUTPUT

34

Enabling lp-io-dir generates detailed network statistics files

§ Average and maximum times are reported for all the application runs
§ Network statistics (hops traversed, latency, routing etc.) are reported for the entire network
§ Detailed statistics for each MPI rank, network node, router, port are generated using lp-io-dir option
§ --lp-io-dir=my-dir can be used to enable statistics generation (Each lp writes it statistics to a summary file)

Application level statistics e.g. time spent in overall execution,
communication, wait operations, amount of data transferred etc.

STATISTICS REPORTED BY LP-IO
§ Dragonfly-msg-stats:

– number of hops, packet latency, packets sent/received, link saturation time reported for
each network node

§ Dragonfly-router-stats
– link saturation time each router port

§ Dragonfly-router-traffic
– Traffic sent for each router port

§ Fat tree and slim fly networks have similar statistics files.
§ Mpi-replay-stats (generated for any network model):

– bytes sent/received per MPI process
– time spent in communication per MPI process
– Number of sends and receives per MPI process

35

CASE STUDY

FIT FLY: INTERCONNECT INNOVATION THROUGH
PARALLEL SIMULATION

36

37

CODES is designed to help find answers to the “What If…” type
questions in HPC Interconnection research

MULTI-PLANE NETWORKS

38

Single Plane Dual Plane

§ Hand in hand with multi-rail networks
– Additional links for packet injection

§ Additional independent planes of routers
– Often sharing terminals across planes

SLIM FLY NETWORK TOPOLOGY
§ Routers in network are organized into groups
§ Each Router

– Some degree of Local connectivity
– Some degree of Global connectivity
– Some degree of Terminal connectivity

§ Guaranteed Diameter-2
§ Groups are divided into two subgraphs

– No global connections between two
groups within same subgraph

§ Connections are determined via non-trivial
generation method
– Makes it challenging to physically build

39

FIT FLY

40

§ Multi-Planar Slim Fly Network
§ Planes share single set of terminals
§ Each plane follows same Slim Fly network

generation method
§ Terminal to Router mapping is alternating

mirrored on each new plane
– Increase path diversity

Slim Fly

Fit Fly

MORE RAILS = MORE THROUGHPUT

41

§ Fit Fly Based on previously
validated Slim Fly Model

§ Additional planes bring additional
throughput

§ Observed expected increase in
throughput with synthetic uniform
random traffic

EXPERIMENTS OVERVIEW

42

Experiment Set 1
Cross Network

Experiment Set 2
Equalized Bandwidth

NETWORK COMPARISON: AMG 1728

43
Lower is better

NETWORK COMPARISON: MG 1000

44
Lower is better

DISCUSSION: NETWORK COMPARISON
§ Slim Fly performed well against state of the art Dragonfly and Megafly networks

– Possible future exascale networks
§ Fit Fly showed great resilience to high levels of interference traffic

– Beat Slim Fly by an order of magnitude

§ Slim Fly and Fit Fly networks show great promise
– Low-diameter-high-path-diversity

45

EQUALIZED BANDWIDTH 12.5GIB/S – AMG 1728

46
Lower is better

EQUALIZED BANDWIDTH 25GIB/S – AMG 1728

47
Lower is better

DISCUSSION: EQUALIZED BANDWIDTH
§ Equalizing the aggregate bandwidth across networks slightly reduced the

advantage that Fit Fly had
– Fit Fly still pulled ahead

• Greater interference resilience
§ Additional planes of routers give less chance for any two packets to interact

– Less interference
– Less buffer wait time
– Increased Application Performance

§ More planes of cheaper routers may be a better option to single-plane-
high-bandwidth networks

48

CASE STUDY: CONCLUSION
§ Fit Fly well outperforms state-of-the-art interconnects
§ More routers and planes = Less Interference
§ More routers = More Cost

– But cheaper routers and links could be used

§ CODES provides a strong environment for answering “What If…”
questions and fostering future innovation in the field of HPC
interconnection networks

49

RUNNING INTERCONNECT SIMULATIONS

§ Checkout the exercises at the wiki link:
https://github.com/codes-org/codes/wiki/quick-start-interconnects

50

https://xgitlab.cels.anl.gov/codes/codes/wikis/quick-start-interconnects

SESSION II: APPLICATION SIMULATION,
WORKLOADS, MPI

51

FOUR STEPS TO SIMULATIONS

1. Prototype system design
– Discussed in the previous session
– Set up using network parameters

2. Workload selection
– Depends on the use case
– Application traces
– Synthetic patterns
– Skeletons

3. Workload creation
4. Execution

52

53

HPC Application
Traces

MPI replay Network
Simulation

Simulation Suite

Network Model
statistics

CODES&&
Network&Models&

CODES&&
Network&workload&

component&
MPI&Simula;on&layer&

Feeds%MPI%opera-ons% Send%/Receive%
Network%messages%

Postmortem&
network&traces&

Synthe;c&traffic&
pa?erns&

CoRTex&collec;ve&
transla;on&library&

General framework for replaying traces on HPC interconnect simulation

CODES specific framework for replaying traces on HPC interconnect simulations

WORKLOADS
§ Synthetic Workloads:

– Follow specific communication pattern and a constant injection rate
– Often used to stress the network topology to identify best and worst case performance
– Examples include uniform random, all to all, bisection pairing, bit permutation
– Don’t require simulation of MPI operations

§ HPC Application Traces:
– Useful for network performance prediction of production HPC applications
– Trace size can be large for long running or communication intensive applications
– Potential to capture computation-communication interplay
– Require accurate simulation of MPI operations
– Simulation results can be complex to analyze

§ Intel SWM Online Workloads:
– Accurate workload representations
– Decoupled from original application
– Portable to arbitrary simulation environments
– Generates traffic on-the-fly 54

DUMPI MPI TRACE LIBRARY

§ Provides trace collection and replay tools for MPI based applications
§ Trace collection is simple – link the MPI application with libdumpi
§ Trace can be replayed using libundumpi utility
§ Libundumpi provides callbacks you can use when MPI operations are replayed
§ Preserves the causality order of MPI operations
§ Captures detailed statistics for each MPI operation call

55

CAPTURING APPLICATION TRACES WITH DUMPI
§ Repository can be cloned at:

– git clone https://github.com/sstsimulator/sst-dumpi.git
§ Configure and build using any MPI compiler
§ Make sure to use ‘—enable-libdumpi’ when configuring
§ Once installed, simply add ‘-L$(DUMPI_INSTALL) -ldumpi’ in your application
§ DUMPI traces will be generated automatically with each application run
§ Naming convention: dumpi-yyyy.dd.mm.hh.mm.ss-MPI-RANK-ID.bin
§ More information can be found at: https://github.com/sstsimulator/sst-dumpi
§ HPC application traces in DUMPI format:

https://portal.nersc.gov/project/CAL/designforward.htm

56

https://github.com/sstsimulator/sst-dumpi.git
https://github.com/sstsimulator/sst-dumpi

GENERATING OTF2 TRACES (1/2)

§ New Open Trace Format version 2 is supported by several tools
§ ScoreP - Scalable Performance Measurement Infrastructure for Parallel Codes
§ Tool suite with several libraries and helper tools

– http://www.vi-hps.org/projects/score-p/
§ Inside ScoreP source directory

– CC=mpicc CFLAGS="-O2" CXX=mpicxx CXXFLAGS="-O2" FC=mpif90
F77=mpif77 ./configure --without-gui --prefix=<SCOREP_INSTALL>

– make && make install
– Make sure ScoreP installation’s bin directory is in PATH

§ Simple case: change the application linker to
LD = scorep --user --nocompiler --noopenmp --nopomp --nocuda --noopenacc --
noopencl --nomemory <your_linker>

57

http://www.vi-hps.org/projects/score-p/

GENERATING OTF2 TRACES (2/2)

§ Before running, set the following environment variables:
export SCOREP_ENABLE_TRACING=1
export SCOREP_ENABLE_PROFILING=0
export SCOREP_MPI_ENABLE_GROUPS=ENV,P2P,COLL,XNONBLOCK

§ Turning tracing on/off: make sure these calls are synchronized
– #include <scorep/SCOREP_User.h>
– SCOREP_RECORDING_ON(); - start recoding
– SCOREP_RECORDING_OFF(); - stop recording

§ During compilation, add flags:
-I$SCOREP_INSTALL/include -I$SCOREP_INSTALL/include/scorep -DSCOREP_USER_ENABLE

§ Trace target options
export SCOREP_TOTAL_MEMORY=256M
export SCOREP_EXPERIMENT_DIRECTORY=/p/lscratchd/<username>/...

58

TRACING OUTPUT

§ scorep-* directory generated with following content:
scorep.cfg traces traces.def traces.otf2

§ scorep.cfg is human readable; can be used to verify if the environment is
correctly generated

§ traces.otf2 is a binary meta-file
§ traces is a directory that contains the details
§ Use otf2-print utility in ScoreP bin to view the traces:

otf2-print –L 0 traces.otf2

59

INFORMATION CAPTURED IN A TYPICAL TRACE
(E.G. IN DUMPI, OTF2)

60

Time stamp, t
(rounded off) Operation type Operation data (only critical

information is highlighted)

t = 10 MPI_Bcast root, size of bcast,
communicator

t = 10.5 MPI_Irecv source, tag, communicator,
req ID

t = 10.51 user_computation optional region name -
“boundary updates”

t = 12.51 MPI_Isend dest, tag, communicator, req
ID

t = 12.53 user_computation optional region name -
“core updates”

t = 22.53 MPI_Waitall req IDs

t = 25 MPI_Barrier communicator

EXAMPLE TO SHOW THE EFFECT OF
REPLAYING TRACES

61

Original Time
stamps Original duration New Time

stamps New duration Operation type

10 0.5 10 0.2 MPI_Bcast

10.5 0.01 10.2 0.01 MPI_Irecv

10.51 2 10.21 2 user_computation

12.51 0.02 12.21 0.02 MPI_Isend

12.53 10 12.23 10 user_computation

22.53 2.47 22.23 0.03 MPI_Waitall

25 1 22.26 1.7 MPI_Barrier

DUMPI VS OTF2

§ Most of the information in the trace format is the same
§ Different w.r.t. capturing of dynamically determined events: e.g. MPI_Waitany
§ DUMPI: stores all the information passed to the MPI call

– Simulation decides which request to fulfill: accurate resolution for target
systems

– If the control flow of the program can change significantly due to the ordering
of operations, simulations are not entirely correct

§ OTF2: stores only the information that is used (e.g. which request was satisfied)
– Accurately mimics the control flow of the trace run
– But does not accurately represent execution for the target system

§ Artifact of leveraging existing tools not originally intended for PDES!
62

INTEL SWM WORKLOADS
§ Open Source version hosted at

https://github.com/codes-org/SWM-workloads
§ Built separately: a CODES-SWM interface

has been developed
§ Includes several workloads including

LAMMPS, Nekbone, Nearest Neighbor,
HACC, MILC, Incast, Point-to-Point

§ Each workload is configured by its own JSON
configuration file
– Specifies size

§ More CODES use information:
– https://github.com/codes-

org/codes/wiki/online-workloads 63

https://github.com/codes-org/SWM-workloads
https://github.com/codes-org/codes/wiki/online-workloads

SIMULATING MPI

64

MPI SIMULATION

§ Matching semantics and standard has to be followed for a correct simulation
– So obviously done

§ Eager – Rendezvous protocol
– Cutoff can be specified in the config

§ Library call overheads handled using a constant cost
§ Collectives:

– OTF2 based simulations implements them internally
– DUMPI based simulations use Cortex

65

TRANSLATING MPI CALLS USING CORTEX

§ Internally most MPI implementations support collectives by translating into point
to point

§ Cortex comes with a set of translation functions to convert collectives into point
to point using MPICH algorithms

§ When linked with DUMPI and CODES, Cortex translates MPI collectives into
point to point sends/receives (simulated by CODES)

§ Cortex can also be used to implement your own translation functions (e.g.
collective algorithms)

§ Cortex tutorial is available at : https://xgitlab.cels.anl.gov/mdorier/dumpi-
cortex/wikis/home

66

https://xgitlab.cels.anl.gov/mdorier/dumpi-cortex/wikis/home

CODES, CORTEX AND DUMPI INTERACTION

67

DUMPI
Application Trace

Cortex

MPI Collective calls

MPI
send/recv/w
aits

CODES

MPI Simulation
Layer

Model-net layer

Network Models

Translated
sends/recvs

MPI TRANSLATION WITH CORTEX

68

§ To enable collective translation, install Cortex and reconfigure CODES with
Cortex

§ Cortex available for download: git clone
https://xgitlab.cels.anl.gov/mdorier/dumpi-cortex.git

§ cmake .. -G "Unix Makefiles" -DMPICH_FORWARD:BOOL=TRUE -
DCMAKE_INSTALL_PREFIX=$HOME/CODES/install/cortex -
DDUMPI_ROOT=$HOME/CODES/install/dumpi

§ See instructions at: https://xgitlab.cels.anl.gov/codes/codes/wikis/codes-
cortex-install

§ Use –with-cortex=/path/to/cortex/install option

https://xgitlab.cels.anl.gov/mdorier/dumpi-cortex.git
https://xgitlab.cels.anl.gov/codes/codes/wikis/codes-cortex-install

IN A NUTSHELL: REPLAYING A SINGLE APPLICATION TRACE
./bin/model-net-mpi-replay --sync=1 --disable_compute=1 --
workload_type="dumpi" --workload_file=dumpi-
2014.03.03.14.55.50- --num_net_traces=1728 -- modelnet-test-
dragonfly-edison.conf

§ Runtime options
– --workload_type: “dumpi” or “online” for SWM
– --num_net_traces : Number of input network traces
– --workload_file: DUMPI trace file
– Network configuration file: Any of the network files (number of simulated

ranks > number of ranks in trace)
– --lp-io-dir (optional): Generates detailed network counters and statistics
– --lp-io-use-suffix (optional): Generates a unique directory per run
– --disable_compute (optional): disable any compute time between MPI events
– --workload_conf_file: for SWM, specifies name of workload to be used

§ For running parallel simulations, use mpirun and –sync=3 69

SIMULATING MULTIPLE JOBS ON THE NETWORK

70

REPLAYING MULTIPLE JOBS
./src/network-workloads/model-net-mpi-replay --sync=1 --
disable_compute=1 --workload_type="dumpi" --
workload_conf_file=multiple-workloads.conf –alloc_fil --
modelnet-mpi-test-dragonfly.conf

§ For multiple jobs, two of the arguments are different:
– Workload_file: Has information on the dumpi/SWM traces for each application
– Alloc_file: List of simulated MPI ranks to be assigned to each job

71

EXAMPLE WORKLOAD FILE

72

§ Left column: Number of application ranks per job
§ Right column: Path and prefix of DUMPI traces for each job – or name of SWM

– Combination SWM and Dumpi slated for future
– Currently can only combine DUMPI+DUMPI/Synthetic and

SWM+SWM/Synthetic

EXAMPLE JOB ALLOCATION FILE

73

§ List of MPI ranks for each job
§ There is a job entry per line
§ Example at the top shows job placement being done in a linear scheme
§ Example below shows job placement in a random fashion (assumes one rank

per node).

GENERATING JOB ALLOCATIONS USING
DIFFERENT SCHEMES
§ Multiple schemes to map jobs onto the network

– Randomly selected nodes
– Contiguous or linear
– Randomly selected switches (ranks ordered on nodes attached to a switch)
– Clustered placement
– …

§ Scripts can be used to generate job allocation files with any of the above
schemes

§ CODES keeps track of the job ID and provides it in simulation output
§ Some python scripts can be found in scripts/allocation_gen

74

SESSION III: STORAGE MODELS AND SYNTHETIC
TRAFFIC GENERATION

75

GOALS OF THE SESSION

§ How to do storage placement on networks?
§ How to generate background network traffic?
§ Using model-net API
§ PDES and Networks Internal
§ Continue with hands on exercises

76

STORAGE PLACEMENT ON INTERCONNECTS

77

STORAGE PLACEMENT ON HPC SYSTEMS

78

BG/P Tree Ethernet InfiniBand Serial ATA

IO nodesCompute nodes File servers Enterprise storage

Burst
Buffer

I/O Forwarding
Software

Fig. 1: Overview of the Argonne IBM Blue Gene/P (Intrepid) computing environment and storage services. This figure highlights
how our proposed tier of burst buffers (green boxes) would integrate with the existing I/O nodes.

the system (Figure 1). With this tier of burst buffers, applica-
tions can push data out of memory and return to computation
without waiting for data to be moved to its final resting place
on an external, parallel file system. We begin (In Section II),
by describing the motivating factors that lead us to investigate
augmenting storage systems with burst buffers and present
our design. We study this storage system architecture using
the CODES parallel discrete-event storage system simulator
(described in Section III). We evaluate several common I/O
workloads found in scientific applications to determine the
appropriate design parameters for storage systems that include
burst buffers (presented in Section IV). We discuss research
related to our recent work (in Section V). We conclude
this paper (in Section VI) by enumerating the contributions
generated by our work, in particular better quantifying the
requirements of a burst buffer implementation and the degree
to which external storage hardware requirements might be
reduced using this approach.

II. MANAGING BURSTY I/O
Bursty application I/O behavior is a well-known phenome-

non. This behavior has been observed in prior studies for HPC
applications performing periodic checkpoints [10], [19], [28],
[32], [37], [43] and for the aggregate I/O activity across all
applications executing within large HPC data-centers [8], [17].
To better understand the viability of the burst buffer approach,
we need quantitative data on application I/O bursts so that we
can accurately represent this behavior in our simulated I/O
workloads. In this section, we present our analysis of bursty
application I/O behavior that we observed on a large-scale
HPC storage system. First, we analyze the most bursty and
write-intensive applications we observed over a one-month
period on a large-scale HPC system. Next, we describe how
these trends hinder the performance of current systems. Then,
we discuss how to manage this behavior through the use of
burst buffers.

A. Study of Bursty Applications
The Argonne Leadership Computing Facility maintains the

Intrepid IBM Blue Gene/P system. Intrepid is a 557 TF

leadership-class computational platform and provides access
to multiple petabytes of GPFS and PVFS external storage.
Figure 1 provides an overview of Intrepid and the external
storage services integrated with the system. Systems such as
Intrepid host a diverse set of applications from many scientific
domains, including climate, physics, combustion, and Earth
sciences. Workloads from these scientific domains are often
characterized by periodic bursts of intense write activity. These
bursts result from defensive I/O strategies (e.g., checkpoints
that can be used to restart calculations following a system
fault) or storage of simulation output for subsequent analysis
(e.g., recording time series data for use in visualization). To
quantify this behavior on Intrepid, we analyzed one month
of production I/O activity from December 2011 using the
Darshan lightweight I/O characterization tool [9]. Darshan
captures application-level access pattern information with per
process and per file granularity. It then produces a summary
of that information in a compact format for each job. In
December 2011, Darshan instrumented approximately 52% of
all production core-hours consumed on Intrepid. We identified
the four most write-intensive applications for which we had
complete data and analyzed the largest production example
of each application. The results of this analysis are shown in
Table I. Project names have been generalized to indicate the
science or engineering domain of the project.

We discovered examples of production applications that
generated as much as 67 TiB of data in a single execution. Two
of the top four applications (Turbulence1 and AstroPhysics)
illustrate the classic HPC I/O behavior in which data is
written in several bursts throughout the job execution, each
followed by a significant period of idle time for the I/O system.
The PlasmaPhysics application diverged somewhat in that it
produced only two bursts of significant write activity; the
first burst was followed by an extended idle period, while the
second burst occurred at the end of execution. The Turbulence2
application exhibited a series of rapid bursts that occurred
nearly back-to-back at the end of execution. On a per compute
node basis, the average write requests range from 0.03% to
50% of the memory size for these applications. We expect the
write request per compute node to be limited by the physical

Router Router Router Router

Router Router Router Router

RouterRouterRouterRouter

RouterRouterRouterRouter

Group Chassis Burst buffer Compute node Network nodes: Local (column) GlobalLocal (row)Network links:

* Image credit: On the role of burst buffers in Leadership class storage system by N. Liu et al. in MSST 2012

Example burst
buffer placement on
a Blue Gene system

Example burst
buffer placement on
a dragonfly system

MODELING BURST BUFFER WITH CODES

§ General purpose model for read and write operations
§ Concurrent, pipelined RDMA requests
§ Comprises of the following:

– a storage manager
– a disk/local storage model
– A resource tracker

§ Placement of storage over the network can be modified using the network config
file

79

PROTOCOL FOR WRITE OPERATIONS

80

Compute(Node(
LP(

Storage(Manager(
LP(SSD(LP(

1.(Write(Request(
2.(Reserve(Disk(
Space((Blocking)(

3.(Send(Response(4.(Pull(Data(

5.(Write(Data(

Burst(Buffer(Model(

USING THE STORAGE MODEL

§ codes_store_init_req (is_write, priority, obj_id,
xfer_offset, xfer_size, codes_req) à For initializing the request

§ codes_store_send_req(codes_req, dest_id, sender, network_id,
mapping_context, ..) à For sending the request

§ codes_store_send_req_rc à For reverse computation

§ Repo available at:https://xgitlab.cels.anl.gov/codes/codes-
storage-server

81

https://xgitlab.cels.anl.gov/codes/codes-storage-server

CONFIGURING STORAGE OVER THE NETWORK

82

Number of concurrent requests

Buffer size for each thread
Size of the Memory (RAM)

Storage size (for disk/LSM)

Aggregate memory+storage size

Disk bandwidth/seek configuration

CONFIGURING STORAGE OVER THE NETWORK

83

Two storage manager entities per 60
clients/compute nodes (Cray Cori
configuration)

Local storage model entity (disk).
One to one correspondence

A total of 64 network nodes

If the data from burst buffer needs to
be drained to the external storage
entity

Dummy nodes are to balance
node to router ratio for BB routers

GENERATING BACKGROUND NETWORK TRAFFIC

84

WHY BACKGROUND TRAFFIC?

§ On production HPC systems, a significant fraction of network nodes can be
occupied

§ How to introduce communication interference if a single application trace is being
replayed on the simulation?

§ Running multiple traces at a large-scale can be expensive
§ One solution is to mix synthetic traffic patterns and HPC application traces

85

EXAMPLE SYNTHETIC PATTERNS

§ Uniform Random: A network node is equally likely to send to any other network
node (traffic distributed throughout the network)

§ All to All: Each network node communicates with all other network nodes
§ Nearest neighbor: A network node communicates with near by network nodes (or

the ones that are at minimal number of hops)
§ Permutation traffic: Source node sends all traffic to a single destination based on

a permutation matrix
§ Bisection pairing: Node 0 communicates with Node ‘n’, node 1 with ‘n-1’ and so

on.
§ …

86

SYNTHETIC TRAFFIC IN CODES

87

§ Typical patterns supported are uniform random and nearest neighbor.
§ All to all and stencil patterns have been tested (pending integration)
§ See src/network-workloads/model-net-synthetic-custom-dfly.c and related files

* Code snippet from synthetic workload generator

GENERATING BACKGROUND TRAFFIC WITH CODES

§ Communication based on uniform random traffic
§ Kicks off when the main workload starts
§ A notification is sent to the background traffic node to stop generating traffic once

the main workload finishes
§ How to enable synthetic traffic generation?
§ Simply add “synthetic” instead of DUMPI trace path in workloads config file

88

PDES AND NETWORK INTERNALS

89

DISCRETE EVENT SIMULATION (DES)

§ Computer model for a system where changes in the state of the system occur at
discrete points in simulation time

§ In this model, each component of the system being simulated is represented
independently via their

§ State variables
§ Virtual time
§ Events - scheduled on it and by it

90

DES EXAMPLE: AIR TRAFFIC

91

Example from slides by Prof Carothers, RPI

Event scheduling from one component to another progresses and
coordinates virtual time across components

each plane is
independently
represented
as a component, so is
the runway

IMPLEMENTING DES

§ ROSS lets users define LP
(logical processes) on which
events can be scheduled with
time stamps

§ Each LP can have a local state
that is accessible and modified
only when events are executed
on it

92

E

Sorted queue of events based on time stamps

E E E E E E E

ROSS LP

tw_lptype model_lps[] = {
{

(init_f) model_init,
(event_f) model_event,
(revent_f) model_event_reverse,
(final_f) model_final,
(map_f) model_map,
sizeof(state)

},
};

93

EXAMPLE OF AN EVENT FUNCTION

§ Typical events act
based on “type”
and “content” of the
message

94

95

ROSS’S LAW OF OPTIMISTIC EXECUTION: FOR
EVERY FORWARD ACTION, YOU MUST TELL ROSS
HOW TO GO BACKWARDS

96

97

APPLICATION SIMULATION IN CODES

98

PE 0 (mpi rank or end points)
— computation tasks,
communication logs, or algorithmic
state
— expected messages
— pending messages
— progress overheads

Routers
— routing tables
— data on buffers connecting
to other routers and NIC
— congestion control scheme
— pending packets in each
buffer
— link bandwidth
— router delays

NIC
— messages to be
transmitted
— packetization
status of messages
being transmitted
— data on buffers
connecting to router
— NIC delay
— bandwidth to
routers

message send

message arrive
task complete

packet send
ack/token send

packet arrive
ack/token send

packet send
ack/token send

packet arrive
ack/token arrive

AVAILABLE MODELS, FEATURES, AND ADDING
A NEW NETWORK MODELS

§ Available: simple-net model, torus, dragonfly-(custom), fat-tree, slim fly, express-
mesh/hyperX

§ Typical model consist of NIC (terminals) and switches/routers
§ NICs

– Common code available for within-node, message ordering, etc
– Plugin code for individual network

§ Switch/routers
– Entirely within a network model

§ But, a significant fraction of node is similar for NIC plugin and switch!

99

NIC
COMMON

Node facing
NIC

model_net
send

delegate
message to NIC
size, destination,

enqueue
to a common

queue

Going off
node?

NO

enqueue at
destination rank
at the right time

poll common
queue

schedule next
poll event

YES

100

§ Types of queues:
§ fifo
§ round-robin
§ priority

§ Other params
§ intra_bandwidth (10)
§ node_copy_queues (4)

NIC NETWORK SPECIFIC

101

struct model_net_method torus_method =
{

.mn_configure = torus_configure,

.mn_register = NULL,

.model_net_method_packet_event = torus_packet_event,

.model_net_method_packet_event_rc = torus_packet_event_rc,

.model_net_method_recv_msg_event = NULL,

.model_net_method_recv_msg_event_rc = NULL,

.mn_get_lp_type = torus_get_lp_type,

.mn_get_msg_sz = torus_get_msg_sz,

.mn_report_stats = torus_report_stats,

.mn_collective_call = NULL,

.mn_collective_call_rc = NULL,

.mn_sample_fn = NULL,

.mn_sample_rc_fn = NULL,

.mn_sample_init_fn = NULL,

.mn_sample_fini_fn = NULL
};

NIC NETWORK SPECIFIC

102

Going off
node?

YES
torus packet event

Has credit
to send

NO

Pick the next
packet to send

send to router
and schedule

event for next send

Wait for
credit

Has
packets to

send

NO Wait for
packetsGet credit

from router

CONTRIBUTING:
• Fork off on the github repository
• Add new features
• Submit a pull request!

THANK-YOU

ADDITIONAL MATERIAL

CODES INSTALLATION

INSTALLATION & SETUP 1/2
§ ROSS INSTALLATION

– Download ROSS repo: git clone https://github.com/ROSS-org/ROSS
– Configure by making a build directory: cd build
– ARCH=x86_64 CC=mpicc CXX=mpicxx cmake
-DCMAKE_INSTALL_PREFIX=../install ../
– make –j 3 && make install

§ CODES INSTALLATION
– Download CODES repo: git clone https://github.com/codes-org/codes
– ./prepare.sh
– Configure in build directory: cd build

../configure --prefix=/path/to/install CC=mpicc CXX=mpicxx
PKG_CONFIG_PATH=/path/to/ross/install/lib/pkgconfig

– Do both make && make tests

106

INSTALLATION & SETUP 2/2
§ DUMPI INSTALLATION

– git clone https://github.com/sstsimulator/sst-dumpi
– CFLAGS="-DMPICH_SUPPRESS_PROTOTYPES=1 -

DHAVE_PRAGMA_HP_SEC_DEF=1"
– ./bootstrap.sh
– ./configure --enable-libundumpi CC=mpicc --prefix=$INSTALL_PATH
– Use –with-dumpi=/path/to/dumpi/install option to enable DUMPI with CODES

§ OTF2 and BigSim based Tracing
– ScoreP/OTF2: http://www.vi-hps.org/projects/score-p/
– Charm++/BigSim:http://charm.cs.illinois.edu/manuals/html/bigsim/manual.html
– TraceR: https://github.com/LLNL/tracer/

§ For installation details and documentation see:
– https://xgitlab.cels.anl.gov/codes/codes/wikis/home
– https://xgitlab.cels.anl.gov/codes/codes/wikis/installation

107

http://www.vi-hps.org/projects/score-p/
https://xgitlab.cels.anl.gov/codes/codes/wikis/home

MORE ON TRACER

TRACER – A LAYER FOR CONFIGURABLE
REPLAY OF APPLICATION TRACES

ScoreP -
OTF2

TraceR

CODES

BigSim Others

Others

Capture application
behavior by tracing runs
on existing systems

Simulation of traffic flow
on NICs and networks

Reproducing the
execution: applications’
behavior,
job placement and
mapping, job scheduling,
MPI/Charm++, etc.

109

DOCUMENTATION

§ Distributed with TraceR source code
§ README.md – getting started
§ README.OTF - OTF2 installation and usage
§ docs/UserWriteUp.txt – detailed workflow and usage
§ utils/README – job placement and task mapping

110

INSTALLING TRACER (1/4)

§ Hosted on github: https://github.com/LLNL/tracer/
§ git clone and follow README.md
§ Download and install ROSS

– Last verified commit provided
§ Download and install CODES

– Last verified commit provided

111

https://github.com/LLNL/tracer/

INSTALLING TRACER (2/4)

§ Choose a trace format: BigSim or OTF2
§ For BigSim, download Charm++

– git clone http://charm.cs.uiuc.edu/gerrit/charm
§ Assuming MPI is available, install two flavors of Charm++

– For compiling codes for trace generation
./build bgampi mpi-linux-x86_64 bigemulator –O2

– For compiling TraceR
./build charm++ mpi-linux-x86_64 bigemulator --with-production

112

http://charm.cs.uiuc.edu/gerrit/charm

INSTALLING TRACER (3/4)

§ For OTF2, download ScoreP
– http://www.vi-hps.org/projects/score-p/

§ Inside ScoreP source directory
– CC=mpicc CFLAGS="-O2" CXX=mpicxx CXXFLAGS="-O2" FC=mpif90

F77=mpif77 ./configure --without-gui --prefix=<SCOREP_INSTALL>
– make && make install

– Make sure ScoreP installation’s bin directory is in PATH

113

http://www.vi-hps.org/projects/score-p/

INSTALLING TRACER (4/4)

§ In tracer/Makefile.common
§ Set ROSS to ROSS’s installation directory
§ Set CODES to CODES’s installation directory
§ If using BigSim,

– Set CHARMPATH
– SELECT_TRACE = -DTRACER_BIGSIM_TRACES=1

§ If using OTF2,
– Make sure ScoreP installation’s bin directory is in PATH
– SELECT_TRACE = -DTRACER_OTF_TRACES=1

§ make: generates traceR executable

114

MORE ON GENERATING OTF2 TRACES

§ ScoreP macros can be used to mark special regions
– SCOREP_USER_REGION_BY_NAME_BEGIN(regionname,

SCOREP_USER_REGION_TYPE_COMMON)
– SCOREP_USER_REGION_BY_NAME_END(regionname)

§ Printing simulation time at locations of interest:
§ Region name with prefix TRACER_WallTime_<any_name> prints current time

during simulation with tag <any_name>.

115

MORE ON GENERATING OTF2 TRACES

§ Simulation time looping:
§ Region name TRACER_Loop can be used to mark beginning and ending of a

code loop (currently once)

§ In future, region names will be used for
– Targeted kernel time modifications
– Targeted message size modifications

116

CODE EXAMPLE FOR TRACING WITH OTF2

int main(int argc, char **argv) {
MPI_Init(&argc, &argv);
SCOREP_RECORDING_OFF();

//initializaton code
MPI_Barrier(MPI_COMM_WORLD);

SCOREP_RECORDING_ON();
SCOREP_USER_REGION_BY_NAME_BEGIN

("TRACER_Loop", SCOREP_USER_REGION_TYPE_COMMON);

if(!myRank)
SCOREP_USER_REGION_BY_NAME_BEGIN

("TRACER_WallTime_Total", SCOREP_USER_REGION_TYPE_COMMON);
startTime = MPI_Wtime();

117

while(iterations < MAX_ITER) {

if(myRank == 0)

SCOREP_USER_REGION_BY_NAME_BEGIN
("TRACER_WallTime_InLoop",
SCOREP_USER_REGION_TYPE_COMMON);

//kernel and other code

}

SCOREP_USER_REGION_BY_NAME_END
("TRACER_Loop");

MPI_Barrier(MPI_COMM_WORLD);

endTime = MPI_Wtime();

if(!myRank)

SCOREP_USER_REGION_BY_NAME_END
("TRACER_WallTime_Total");

SCOREP_RECORDING_OFF();

RUNNING TRACER

§ A typical run command:
mpirun -np 8 ./traceR --sync=3 --nkp=16 --extramem=100000 --max-opt-
lookahead=1000000 --timer-frequency=1000 –lp-io-dir=stats-dir -- torus.conf
tracer_config

§ In green, ROSS options
– --nkp : how many KPs to create per PE = total LPs/<-np>
– --extramem : how many ROSS messages to allocate = 100K should work for

most cases
– --max-opt-lookahead : optimistic leash = 1 millisecond is a good number

118

RUNNING TRACER

§ A typical run command:
mpirun -np 8 ./traceR --sync=3 --nkp=16 --extramem=100000 --max-opt-
lookahead=1000000 --timer-frequency=1000 –lp-io-dir=stats-dir -- torus.conf
tracer_config

§ TraceR-CODES options
– --timer-frequency : how frequently to print progress of task completion;

optional, default = 5000
– --lp-io-dir : where to write output stats; optional; code fails if the directory

exists to avoid over-writing
– torus.conf : network config file
– tracer_config : TraceR config file

119

TRACER PARAMETER IN NETWORK FILE

§ server in MODELNET_GRP
– Number of processes associated with a switch
– Assigned in a round-robin manner to nodes

§ soft_delay in PARAMS
– Approximate overhead of making an MPI/runtime call
– In nanoseconds

§ rdma_delay in PARAMS
– Overhead of using RDMA call in rzv protocol, in nanoseconds

§ eager_limit in PARAMS
– Switch over point between eager and rzv protocols, in bytes

§ copy_per_byte in PARAMS
– Copy cost for a byte, in nanoseconds per byte

120

TRACER CONFIG FILE (1/2)

Format:
<global map file> or NA
#jobs
<path to job traces> <task mapping file or NA> <#ranks> <loop iterations>

121

Example:
global_map.bin
2
traces-64/traces.otf2 job0 64 1
traces-32/traces.otf2 job1 32 1

TRACER CONFIG FILE (2/2)

§ At the end of file,
§ E <job id> scale_all <scale factor>

– Inverse scales computation time by the given factor
– E.g. : E 0 scale_all 40

§ S <job id> <msg size> <replace by>
– Change the size of message
– Under review, to be merged

122

SAMPLE OUTPUT

PE0 - LP_GID:0 : START SIMULATION, TASKS COUNT: 245611, FIRST TASK: 0, RUN TIME TILL
NOW=70.000000 s, CURRENT SIM TIME 1.005877
[0 0 : time at task 0/245611 0.000000]
[0 0 : Begin TRACER_WallTime_MainLoop 0.000001]
[0 0 : time at task 100/245611 0.000663]
[0 0 : Begin TRACER_WallTime_NextTrajec 0.001175]
[0 0 : time at task 200/245611 0.003104]
….
….
[0 0 : time at task 245600/245611 1.485123]
[0 0 : End TRACER_WallTime_NextTrajec 1.485264]
[0 0 : End TRACER_WallTime_MainLoop 1.485265]

123

CASE STUDIES WITH CODES-TRACER

125

§ Quantify the effectiveness of multiple network rails in increasing network performance
§ Evaluate job placement methodologies and routing choices to maximize the

throughput of a multi-rail fat-tree network
§ Investigate network performance gains offered by multiple rails in response to

increased compute performance of high-density compute nodes
§ Improve routing, injection and job allocation design choices of multi-rail fat-tree

networks to maximize individual application and system wide performance

Related papers
§ Jain et al. Predicting the Performance Impact of

Different Fat-Tree Configurations (To appear in
Supercomputing 2017)

§ Wolfe et al. Preliminary Performance Analysis of
Multi-Rail Fat-tree Networks (CCGRID 2017)

Fat-tree strong scaling rail performance

§ Multi-application
workload

§ Linear system
improvement

Evaluating Methods for Effective Fat-tree Utilization

VISUALIZING HPC INTERCONNECT PERFORMANCE

• K. Li, M. Mubarak, R. Ross et al. “Visual
Analytics Techniques for Exploring the
Design-space of large-scale high-radix
networks”, to appear in IEEE Cluster 2017

Comparing job placement schemes using the CODES simulation framework of the high-radix dragonfly network running
the Algebraic Multigrid Solver (AMG), AMR BoxLib and MiniFE applications. The visualizations show the aggregated
network view of all the routers and network links.

(b) Random Router (c) Hybrid (d) Application Performance

Global link saturation Local link saturation Avg. packet latency
00 0420us 1300us 54us

Random router job
placement causes
high saturation on
non-minimal routes
between AMG and
AMR Boxlib.

Local links have
low traffic and
saturation for AMR
Boxlib with hybrid
job placement.

MiniFE

Mi
niF

E

MiniFE

Hybrid job placement
significantly reduces the
saturation on non-minimal
routes for AMR Boxlib.AMR Boxlib AMR Boxlib

Very few non-minimal
routes between AMG
and AMR Boxlib with
random group job
placement.

AMG

AMG

AMG

AMR Boxlib

proxies
proxiesproxies

Avg. Packet Latency (microseconds)
* lower is better

Random
Group

Random
Router

Hybrid

MiniFE has much
higher traffic on both
global and local links.

Random router job placement
lets AMG gains performance
at the cost of AMR Boxlib.

Hybrid placement is better than random
group placement for all three applications.

High usage of global
links for traffic
between terminals
with the same job .

(a) Random Group

(d) Application Performance

Avg. Packet Latency (microseconds)
* lower is better

Random
Group

Random
Router

Hybrid

Random router job placement
lets AMG gains performance
at the cost of AMR Boxlib.

Hybrid placement is better than random
group placement for all three applications.

Fig. 7: Projection views showing intra-group communication patterns
and the correlation between the saturation time of each type of
network links on a Dragonfly network with 5,256 terminals using
adaptive routing.

local links. The concentric rings (from innermost to outermost)
show the saturation time of the local links, global links, and
terminals, respectively. For nearest neighbor workload, only
one link between each pair of routers has traffic flow, as the
terminals are only sending packets to their closest neighbor.
Because of adaptive routing, we can also see some low traffic
on other local links as they are used for non-minimal route
in order to avoid congestion. For the uniform random traffic,
the terminals are randomly communicating with each other.
Since this workload is load balanced, the bundled links in the
projection view have about the same amount of traffic, and
thus showing the same color.

Using the same configuration for the projection view, Fig-
ure 8 shows a Dragonfly network of 2,550 terminals running
the Algebraic Multigrid Solver (AMG) application with 1,728
MPI ranks. The AMG applciation has a 3D nearest neighbor
communication pattern, where each terminal communicates
with three other neighboring ranks instead of communicating
to just one nearest neighbor. Therefore, more local links have
higher traffic in AMG when comparing to the nearest neighbor
traffic pattern.

In Figure 9, the projection views show the global link
traffic in a Dragonfly network of 9,702 terminals running the
uniform random workload, with the concentric rings (from
inner to outer) depict global link saturation time (color),
local link traffic and saturation time (size and color), and
terminal link saturation time, respectively. The projection view
configurations in Figure 8 and Figure 9 can be used together to
reveal both the inter-group and intra-group traffic patterns, al-
lowing visual exploration of the correlation between the traffic
patterns and the selected performance metrics. The correlation
shown in circular hierarchies of the projections view help us
gain insights into the workload characteristics and network
performance problems. Without the visual aggregation and
summary provided in the projection views, it’s difficult to see
such correlations in a large-scale network.

Fig. 8: Adaptive routing causes higher usage of local links and lower
saturation time on all type of links on a Dragonfly network of 2,550
terminals running the AMG application.

Fig. 9: Uniform random traffic on a Dragonfly with 9,702 terminals.
Adaptive routing causes higher inter-group traffic, lower local link
saturation time, and higher average hop counts and packet latency.

B. Routing Strategies

An important factor that determines network performance is
the routing strategy for sending packets. To compare routing
strategies, projection views with same configuration and visual
encoding scales provide easy comparisons of network perfor-
mance. In Figure 8, we compare the network performance
between minimal and adaptive routing strategies for the AMG
application. It is clear that adaptive routing results in high
intra-group traffic while having much lower saturation time for
all type of network links, when comparing to minimal routing.
The network performance of minimal and adaptive routing
for the uniform random workload is compared in Figure 9.
It clearly shows that adaptive routing leads to higher usage
of the global and local links than minimal routing. This is
because adaptive routing randomly selects proxy groups for

Application Ranks Data Comm. Pattern
AMG 1728 1.2GB 3D nearest neighbor
AMR Boxlib 1728 2.2GB Irregular and sparse
MiniFE 1152 147GB Many-to-many

TABLE I: Summary of Applications.

126

§ Need to design new scalable collective algorithms for high-radix interconnects
§ Investigate the parameter space of these algorithms, and the effects of cross-

application communication interference
§ Designed/evaluated several collective algorithms for Dragonfly networks

127

ACCELERATING COLLECTIVE COMMUNICATION ON
DRAGONFLY NETWORKS

M. Dorier et al. “Evaluation of Topology-Aware Broadcast Algorithms for Dragonfly
Networks ”, IEEE Cluster 2016

(a) Tree (Non topology aware) (b) Local Links First (topology-aware)
(c) Global Links First

USING MODEL-NET API

128

CONFIGURATION

§ Model-net– An abstraction layer on top of network models – topology details are
specified through the config files

§ A valid network configuration file – examples can be found in the repo
§ Network model must be registered – model_net_register

§ CODES mapping must be setup – codes_mapping_setup

§ Use model-net function calls – model_net_event(network id, source,
destination, message size,…)

§ Example of using model-net – tests/model-net-test.c

129

