CODES-TRACER TUTORIAL

ENABLING HPC DESIGN SPACE EXPLORATION VIA DISCRETE-EVENT SIMULATION

NIKHIL JAIN NEIL MCGLOHON
Compute Architect PhD Student Researcher
NVIDIA Department of Computer Science

Rensselaer Polytechnic Institute

Adapted from N. Jain and M. Mubarak’s slides for HOTI2017

LINKS

= Slides available for download at;
— http://nikhil-jain.qgithub.io/codes-hoti.pptx

= QoS Slides available for download at:
— https://nmcglo.com/public-talks/df-dfp-qos-isc19.pdf

= CODES Repo and Wiki:
— https://qgithub.com/codes-org/codes

» Tracer Repo:
— https://github.com/LLNL/TraceR

» NERSC DOE Design Forward DUMPI Traces:
— https://portal.nersc.qov/project/ CAL/designforward.htm

http://nikhil-jain.github.io/codes-hoti.pptx
https://nmcglo.com/public-talks/df-dfp-qos-isc19.pdf
https://github.com/codes-org/codes
https://github.com/LLNL/TraceR
https://portal.nersc.gov/project/CAL/designforward.htm

TUTORIAL OUTLINE

= Session |: Introduction to CODES and TraceR, and their use for simulations
= Session Il: Replaying HPC workloads, simulating MPI operations and collectives

» Session lll: Storage simulations, Misc

PROJECT CONTRIBUTORS

Argonne National Laboratory, Mathematics and Computer Science

Lawrence Livermore National Laboratory, Center for Applied Scientific Computing

Nvidia, Compute Arch

Rensselaer Polytechnic Institute, Computer Science

University of Arizona, Computer Science

UC Davis, Computer Science

University of Maryland, Computer Science

SESSION I: INTRODUCTION, CASE STUDY, AND
INTERCONNECT MODELS

GOALS OF SESSION |

= Introduction

= Case study

= Features

» HPC Interconnect models

» Configuring interconnect simulations
» Interpreting simulation output

INTRODUCTION & BACKGROUND

BUILDING BLOCKS OF HPC INTERCONNECTS

HPC performance is sensitive to the interconnect latency
» Interconnects are custom built to achieve maximum throughput

= Basic Components:

— Network topology: Arrangement of network nodes and links to maximize
performance.

— Routing: The protocol using which a packet selects its next destination.
Depends on the underlying network topology.

— Flow control: Allocating network links and buffers to packets as they traverse
through the network. Usually independent of the underlying topology and
routing protocols.

WHY HPC INTERCONNECT SIMULATION?

= HPC interconnects are complex!

» Need to look at several factors that influence network performance:
— Interconnect Topology
— Routing
— Quality of Service
— Job placement policies
— Inter-job and intra-job interference
— Storage placement on network

» Improved performance is contingent on an optimal combination of the above
factors

ROSS: PARALLEL DISCRETE-EVENT SIMULATOR

» Discrete event simulation (DES): a
Computer model for a SyStem where Simulation of a 24.5K node system (16 endpoints/node)
changes in the state of the system occur
at discrete points in simulation time

» Parallel DES allows execution of
simulation on a parallel platform

» Rensselaer Optimistic Simulator System
(ROSS) provides PDES capability for
CODES |00 | | | | | | | J

— Optimistically schedules events. 16 32 64 128 256 512 1024 2048 409
Rollback realized via reverse Number of simulating cores
computation

— Logical processes (LPs) model state
of the system

IOOOO TN 5D Torus —— ‘
: 3-level Fat-tree - -E- -
201-group Dragonfly ---0-:-

1000

Time to simulate (s)

-,

10

CODES: MODELING & SIMULATION FRAMEWORK

= Accelerate HPC system co-design by

providing a detailed simulation of - -
HPC interconnects, storage, \\ -4
workloads and surrounding .
. , etwork
environment Models

= Couple best-of-breed parallel discrete

event simulation with experts in Workload Storage
interconnects and storage architecture senera’ CODES = "
deS|gn \\~~~- -M __—"’
= Incrementally develop HPC simulaton 772777
capability, validating approach and T

components along the way

= Complement experimentation on real
systems Figure: CODES Architecture Diagram

11

TRACER: REPLAYING MPI TRACES

» OTF2 traces for MPI

» BigSim traces for Charm++, AMPI

» Default and user-defined job placement and task mapping
» MPI point-to-point semantics and protocols

= |Inbuilt collectives: tree based bcast, reduce, allreduce, and barrier; message size
based algorithms for alltoall and allgather

= Simulation time scaling

12

FEATURES: HPC SIMULATIONS

» Packet-level simulations of HPC interconnect topologies

» Trace-driven analysis (DUMPI+OTF2), synthetic workloads
= Multiple jobs can be replayed on the network

» Different job placement schemes can be used

» Multiple ranks mapped to network nodes can be used

» Detailed statistics generation

= MPI collective operations can be simulated

» General purpose storage model that uses concurrent, pipelined RDMA
read/write requests (simulating burst buffers/SSD)

13

SIMULATION STACK

|
' |
: Comm I ,
| .
' |

CODES System Models

System Models in Session | & IlI

Any machine with MPI support

14

HPC INTERCONNECT MODELS

STRUCTURE OF MODERN INTERCONNECT

TOPOLOGIES

Dragonfly Class
Networks
Groups with All-To-All
Global Connections
Flexible Routing
Strong resilience to
inter-job interference

A 7 Group Dragonfly

N e =
e = W
SVraSVyaNy @ nvvy
Dl DR e
PO PPN PPN AP

Slim Fly Network

Cost-Effective o
Low-Diameter-High-
Path-Diversity
Complex Global
Link Structure

s AR AAAARRANNY

oy onsn ooae e

%

f amsgastt aona B
0806060066666

An 8 Group Slim Fly

Torus Network
Homogeneous structure
Dedicated routers per compute node

Fat tree Network
Static Routing
Job placement impacts

inter-job interference

A 3-level pruned Fat Tree with 64 compute nodes

z,

1= IJIj’ J//i:
U ” ‘%)_
L4 | —=
22 mip=tA
Lh LA
b] “{
Ll |4
?PJQE’JJ |T‘J/K'J) T
éﬂyé_u { I’L/K’_u {
=il

A 3-ary 3-d Torus network
16

OVERVIEW OF NETWORK MODELS

= Multiple network models are supported — 1D/2D Dragonfly, Megafly, Slim Fly, Fat
Tree, Express Mesh, Arbitrary graphs, Torus...

= Abstraction layer ‘model-net’ sits on top of network models
— Breaks messages into packets
— Offers FIFO, round robin and priority queues

= To try different networks, simply switch the network configuration files!

» Storage models, MPI simulation and workload replay layers are independent of
the underlying networks

17

SIMPLE NET NETWORK MODEL

= A latency/bandwidth model where message is directly sent from source to
destination

» Uses infinite size queuing
» Easy setup— uses a startup delay and link bandwidth for configuration

= Mostly for debugging/testing purposes-- Can be used as a starting point when
replaying MPI traces

= |t can be used as a baseline network model with no contention and no routing

18

CONFIGURING SIMPLE-NET LOGP MODEL

O~

LPGROUPS
{

MODELNET_GRP
{
repetitions="16";
server="1";
modelnet_simplenet="1";
}
}
PARAMS
{
packet_size="512";
message_size="384";
modelnet_order=("simplenet");

modelnet_scheduler="fcfs";

net_startup_ns="1.5";

net_bw_mbps=''20000";

For mapping entities on ROSS MPI
processes

Messages are broken into packets
by the model-net layer

ROSS specific parameter (event size)
Startup delay in ns

Link bandwidth in MB/s (one link
between each pair of nodes)

Configuration file can be found in codes/tests/conf/modelnet-test.conf

19

RUNNING A SIMPLE-NET LOGP MODEL

" /tests/modelnet-test --sync=1 -- tests/conf/modelnet-
test.cont

= A simple test in which a simulated MPI rank sends message to the next rank,
which replies back

= Continues until a certain number of messages is reached

20

DRAGONFLY NETWORK MODEL

= Multiple forms of routing are supported: minimal, adaptive, non-minimal and
progressive adaptive

= Packet based simulation with credit based flow control

» Uses multiple virtual channels for deadlock prevention

[c03]

e
\ \ | / 7
\ \ | /

L/ 1\ A
o

g2

g3

A Cray XC style dragonfly grou
Dragonfly group as proposed by Kim, Dally et al. y y gonily group

21

CONFIGURING DRAGONFLY NETWORK MODEL

{

EPGROUPS
MODELNET. GRP nw-Ip is a simulated MPI
{ process
repetitions="2400";
A simulated dragonfly
I.“'l_].p=||4||;
network node
modelnet_dragonfly_custom="4";)
modelnet_dragonfly_custom_router="1"; A simulated dragonfly

network router

For simulating multiple MPI processes per node - nw-lp=num-procs * number

of network nodes
Self messages—> messages sent to the same network node

Overhead for sending self message can be configured

Configuration file can be found in codes/src/network-
workloads/dragonfly-custom

22

CONFIGURING DRAGONFLY NETWORK MODEL

PARAMS

packet_size="4096";
modelnet_order=("dragonfly_custom","dragonfly_custom_router");

modelnet_scheduler="fcfs";

Router arrangement within a group.
Should match the input network
e o configuration

num_router_cols="16";

ot i Buffer size of virtual channels can be
local_vc_size="8192"; Con ﬁgured

global_vc_size="16384";

e Number of compute nodes per router
local_bandwidth="5.25"; . .
is configurable

chunk_size="4096";

global_bandwidth="4.69";
cn_bandwidth="16.0";

message_size="592";

Network configuration files — can be
ot custom generated (see scripts/gen-
cheack contip-ciie tof | cray-topo/README.txt).

intra-group-connections="Twn{src/network-workleads/conf/dragonfly-custom/int ra-9K-custom";
inter-group-connections="._./src/network-workloads/conf/dragonfly-custom/inter-9K-custom";

routing="prog-adaptive"; 23

RUNNING A DRAGONFLY NETWORK
SIMULATION

= Download the traces:
— wget https://portal.nersc.gov/project/CAL/doe-miniapps-
mpi-traces/AMG/df AMG nl728 dumpi.tar.gz

" Run the simulation:
— ./src/network-workloads/model-net-mpi-replay --sync=1l --
disable compute=1 --workload type="dumpi" --
workload file=df AMG nl728 dumpi/dumpi-
2014.03.03.14.55.50- —-—num net traces=1728 --

../src/network-workloads/conf/dragonfly-custom/modelnet-
test-dragonfly-edison.conf

24

FAT TREE NETWORK MODEL

= Can simulate two and three level fat tree

networks Core ,,\Repetitiom ,_\Repetition10
= \Width of the tree (number of pods) can also
be configured ':k:l \ \ pogs
= Two forms of routing are supported: ggni : i / NV
— static: uses destination-based look-up ': ! / ;
tables Eagel it LYY
— adaptive: selects least congested output / | i I \“\ \
- iortb IR //HM //M\ M\\\M \f\ I \ | \\\\\\ M\\\\ \\\\\\
acket based simulation with credit base Full 3-level k=8 Fat-Tree with 128 compute nodes
flow control

25

FAT TREE NETWORK CONFIGURATIONS

Lo T P BB

a) Single rail single plane (full) b) Single rail single plane (tapered) c) Dual rail single plane d) Dual rail dual plane

» Tapering can be used to connect more nodes to the leaf switches
— Reduces the bandwidth, switches and links at higher level

» To get higher bandwidth, nodes can connect to multiple ports (multi-rail) in one
or more plane (multi-plane)
— These configurations can also be tapered to reduce switches, links at
higher levels

» Model supports configurations for multiple rails, multiple plane and tapering

26

CONFIGURING FAT TREE NETWORK MODEL

Nw-Ip is a simulated MPI
process

A simulated fat tree
network node

Three simulated fat tree
network switches (one in
each level of the network)

27

CONFIGURING FAT TREE NETWORK MODEL

Switch arrangement
should match the input
network configuration

Switch radix can be
configured

Static routing requires precomputed
destination routing tables

See:

https://github.com/codes-

: org/codes/wiki/codes-

" fattreeffenabling-static-routing

28

SLIM FLY NETWORK MODEL

G5 @D @D @D @D Tad @D @ @D [
@ (@ (@ [@ e [[[[l (i
@ @@ @@ ([wiw((w((m=
@D\DDD\@D (o (o (o (o (2
DR RN R R R R R

= Topology of interconnected router groups built with MMS graphs
* The max network diameter is always 2
= Packet based simulation with credit based flow control

= Multiple forms of routing are supported:
— minimal: 2 virtual channels
— non-minimal: 4 virtual channels
— adaptive: 4 virtual channels

Fig. Slim Fly with g=5
29

NFIGURING SLIM FLY NETWORK MODEL

Router arrangement within a

group.
b ot b)
‘ _ » 6", , , 5"," 11”) ’
25600 Generator sets are set of
"25600" ; . .

25600 indices used to calculate
h="12.5"; connections between routers in
NS the same subgraph. They must

" minimal”; be precomputed.

4"

HYPER-X, EXPRESS MESH, AND TORUS

» Express Mesh: low-diameter densely connected
grids
— Allows for specifying connection gap
— Gap =1 -> HyperX
= Torus: based on a n-dimensional k-ary network

topology
— Number of torus dimensions and length of each

dimension can be configured
— Supports dimension order routing
= Uses bubble escape virtual channel for deadlock
prevention

A
=

I i /,EE
By

L3 D

31

ARBITRARY GRAPHS

= Can also input arbitrarily connected graphs
— Defined using DOT format

= Static routing is required
— Generated using OpenSM, courtesy Jens Domke

32

INTERPRETING SIMULATION OUTPUT

INTERPRETING SIMULATION OUTPUT

Total GVT Computations (%]
Total All Reduce Calls 0

nan

p#E(bytes sent 13584368 recvd 13584368

ax runtime 449332.124035 ns avg runtime 443706.882419
max comm time 449332.124035 avg comm time 443706.882419
max send time 5142770.436275 avg send time 2779472.247926
Qax recv t1me 4149449.596308 avg recv tlme 2335071.9406

Application level statistics e.g. time spent in overall execution,
communication, wait operations, amount of data transferred efc.

-P-I0: data flles
dragonf ly s

Enabling Ip-io-dir generates detailed network statistics files

©.925252 us maximum chunk latency 9.312357 us avg message size 812.563110 bytes finished messages 16820 finished chunks 65012

ADAPTIVE ROUTING STATS: ally @ chunks routed non-minimally completed packets 65012

Total packets generated 39722 finished 39722

= Average and maximum times are reported for all the application runs
= Network statistics (hops traversed, latency, routing etc.) are reported for the entire network

» Detailed statistics for each MPI rank, network node, router, port are generated using Ip-io-dir option

= --Ip-io-dir=my-dir can be used to enable statistics generation (Each Ip writes it statistics to a summary file)

34

STATISTICS REPORTED BY LP-IO

Dragonfly-msg-stats:
— number of hops, packet latency, packets sent/received, link saturation time reported for

each network node

Dragonfly-router-stats
— link saturation time each router port

Dragonfly-router-traffic
— Traffic sent for each router port

Fat tree and slim fly networks have similar statistics files.

Mpi-replay-stats (generated for any network model):
— bytes sent/received per MPI process

— time spent in communication per MPI process

— Number of sends and receives per MPI process

35

CASE STUDY

FIT FLY: INTERCONNECT INNOVATION THROUGH
PARALLEL SIMULATION

CODES is designed to help find answers to the “What If...” type
questions in HPC Interconnection research

37

MULTI-PLANE NETWORKS

= Hand in hand with muilti-rail networks
— Additional links for packet injection

= Additional independent planes of routers
— Often sharing terminals across planes

e o

Single Plane

Dual Plane

38

SLIM FLY NETWORK TOPOLOGY

= Routers in network are organized into groups

= Each Router
— Some degree of Local connectivity
— Some degree of Global connectivity
— Some degree of Terminal connectivity

= Guaranteed Diameter-2

= Groups are divided into two subgraphs
— No global connections between two
groups within same subgraph

= Connections are determined via non-trivial

generation method
— Makes it challenging to physically build

erouters M nodes node connections === local connections —— global connections

39

FIT FLY

= Multi-Planar Slim Fly Network
» Planes share single set of terminals

= Each plane follows same Slim Fly network
generation method

= Terminal to Router mapping is alternating
mirrored on each new plane
— Increase path diversity

D P gR AN

\-i-- --ii\ S
N\

e GLOBAL -

%/f\\&

/77 N N\\

nEnE Beas EEnn EEmE

Neebbbbbbs4466dss

Slim Fly

40

MORE RAILS = MORE THROUGHPUT

Offered vs. Accepted Load -- Multi-Rail

—e— Slim Fly (1-Rail)
—o— Fit Fly 2-Rail
T —e— Fit Fly 4-Rail
—e— Fit Fly 8-Rail

= Fit Fly Based on previously 800
validated Slim Fly Model

= Additional planes bring additional
throughput

~
o
S

(2]
o
o

0
o
o

= Observed expected increase in

throughput with synthetic uniform
random traffic

w
o
o

N
o
o

Accepted Load (% Link Bandwidth)
N
o
o

-

o

o
1

100 200 300 400 500 600 700 800
Offered Load (% Link Bandwidth)

41

EXPERIMENTS OVERVIEW

Experiment Set 1
Cross Network

Experiment Set 2
Equalized Bandwidth

Random Random
1000 1000
Slim Fly Fit Fly
= i .
~ Dragonfly Megafly

Random Random
1000 1000
 SlimFly || FitFly

12.5GiBls | 7GiBls

~

 SlimFly || FitFly
~ 25GiBls || 12.5GiBIs |

42

NETWORK COMPARISON: AMG 1728

Comm. Time - AMG1.7K - Cross Network

35 mmm Slim Fly (1-Rail)
mm Fit Fly (2-Rail)

@ B Dragonfly

§,30' . Megafly

g

iZ 25+

c

x=]

© 201

L

5

£ 15

£

Q

© 101

%

©

= g5

0 7 7 7 u ?
0 2 4 75 15 3625 725

Background Injection (% Link Bandwidth)

Max. Latency (uUs)

2000 +

1500

1000

500

Latency - AMG1.7K - Cross Network

—e— Slim Fly (1-Rail)
—¥— Fit Fly (2-Rail)
—&— Dragonfly
—<— Megafly

%7

0 2 4 75 15 3625 725
Background Injection (% Link Bandwidth)

Lower is better

g
=}

o
3]

Average Hops Traversed
N
o

w
o

N
3

Hop Count - AMG1.7K - Cross Network

o
=}

»
=)

w
o

—e— Slim Fly (1-Rail)
~¥— Fit Fly (2-Rail)

7 —A— Dragonfly
—<— Megafly
< < —— < /
<« < < <
A " , ———A—A
e e

0 2 4 75 15 3625
Background Injection (% Link Bandwidth)

725

43

NETWORK COMPARISON: MG 1000

Comm. Time - MG1K - Cross Network Latency - MG1K - Cross Network
351 = Slim Fly (1-Rail) —e— Slim Fly (1-Rail)
W Fit Fly (2-Rail) —¥— Fit Fly (2-Rail)
?30- W Dragonfly 2000 | —A— Dragonfly
é . Megafly —<— Megafly
[0}
£ 251 m
= 4 15001
S 20+ &
g 5
5 15 % 1000
£ %
5 s
O 104
X 500 A
©
= 54
- — »—"
0 01 % . ,
0 2 4 75 15 3625 725 0 2 4 75 15 3625 725

Background Injection (% Link Bandwidth)

Background Injection (% Link Bandwidth)

Lower is better

g
=}

o
3]

Average Hops Traversed
SN
&)

w
o

N
w”

Hop Count - MG1K - Cross Network

o
=}

»
=)

w
o

—e— Slim Fly (1-Rail)
~¥— Fit Fly (2-Rail)

7 —A— Dragonfly

—<— Megafly

0 2 4 75 15 3625 725
Background Injection (% Link Bandwidth)

44

DISCUSSION: NETWORK COMPARISON

» Slim Fly performed well against state of the art Dragonfly and Megafly networks
— Possible future exascale networks

» Fit Fly showed great resilience to high levels of interference traffic
— Beat Slim Fly by an order of magnitude

= Slim Fly and Fit Fly networks show great promise
— Low-diameter-high-path-diversity

45

EQUALIZED BANDWIDTH 12.5GIB/S — AMG 1728

Max. Communication Time (ms)

Comm. Time - AMG1.7K - Comparable Bandwidth

= Sim Fly (12.5 GiB/s) 264

254 mmm FitFly (7 GiBJs)
20 4
151
104

5 5.2

17
0 0505 0506 0506 0606 0606 1.0
0 2 4 75 15 3625 725

Background Injection (% Aggregate Bandwidth)

Max. Latency (us)

2000 1
1750
1500
1250
1000
750+
500 A
2501

Latency - AMG1.7K - Comparable Bandwidth

—e— Slim Fly (12.5 GiB/s)
~¥— FitFly (7 GiBls)

4 = @ ¢

0 2 4 75 15 3625 725

Background Injection (% Link Bandwidth)

Lower is better

5.0

>
5}

Average Hops (ms)
w
o

g
=}

2.5

Hop Count - AMG1.7K - Comparable Bandwidth

b
=)

—e— Slim Fly (12.5 GiB/s)
~¥— FitFly (7 GiBls)

./'/*—.—__._—’_‘\‘

0 2 4 75 15 3625 725

Background Injection (% Aggregate Bandwidth)

46

EQUALIZED BANDWIDTH 25GIB/S - AMG 1728

Comm. Time - AMG1.7K - Comparable Bandwidth Latency - AMG1.7K - Comparable Bandwidth 50 Hop Count - MG1K - Comparable Bandwidth
= Sim Fly (25 GiB/s) 8o 14001 —e— siim Fly (25 GiB/s) ' —e— Siim Fly (25 GiB/s)
7.5 e FitFly (125 GiBls) —¥— FitFly (12.5 GiBJs) —¥— FitFly (12,5 GiBs)
2 1200 - 45
o 15.01 '
£ = 1000 =
1251 2 E
C " 4
2 3 800 § 4.0
8 10.0 8 T
S ©])
é 7.5 i 600 §3-5'
©
IS = 400 2
< 501
3.01
g 200
= 251
0405 0505 0505 0506 0 —
0.0- T T T T T T T 2.5+— T T T T T T
0 2 4 7.5 15 36.25 725 0 2 4 7.5 15 36.25 725 0 2 4 7.5 15 36.25 725
Background Injection (% Aggregate Bandwidth) Background Injection (% Link Bandwidth) Background Injection (% Aggregate Bandwidth)

Lower is better

DISCUSSION: EQUALIZED BANDWIDTH

» Equalizing the aggregate bandwidth across networks slightly reduced the
advantage that Fit Fly had
— Fit Fly still pulled ahead
» Greater interference resilience

= Additional planes of routers give less chance for any two packets to interact
— Less interference
— Less buffer wait time
— Increased Application Performance

= More planes of cheaper routers may be a better option to single-plane-
high-bandwidth networks

48

CASE STUDY: CONCLUSION

» Fit Fly well outperforms state-of-the-art interconnects
_ -.\’-
= More routers and planes = Less Interference PR g
= More routers = More Cost o
— But cheaper routers and links could be used

= CODES provides a strong environment for answering “What If...”
questions and fostering future innovation in the field of HPC

interconnection networks

49

RUNNING INTERCONNECT SIMULATIONS

= Checkout the exercises at the wiki link:
https://github.com/codes-org/codes/wiki/quick-start-interconnects

50

https://xgitlab.cels.anl.gov/codes/codes/wikis/quick-start-interconnects

SESSION IlI: APPLICATION SIMULATION,
WORKLOADS, MPI

FOUR STEPS TO SIMULATIONS

1. Prototype system design
— Discussed in the previous session
— Set up using network parameters

2. Workload selection
— Depends on the use case
— Application traces
— Synthetic patterns
— Skeletons

3. Workload creation
4. Execution

52

Simulation Suite

HPC Application MPI replay » Sl_\letvlvork » Network Model
Traces imulation statistics

General framework for replaying traces on HPC interconnect simulation

Postmortem _, CoRTexcollective Synthetic traffic
network traces translation library patterns

CODES _ _ CODES
Network workload | MPI Simulation layer , D T

component

Send /Receive

Feeds MPI operations
Network messages

CODES specific framework for replaying traces on HPC interconnect simulations
53

WORKLOADS

= Synthetic Workloads:
— Follow specific communication pattern and a constant injection rate
— Often used to stress the network topology to identify best and worst case performance
— Examples include uniform random, all to all, bisection pairing, bit permutation
— Don’t require simulation of MPI operations

= HPC Application Traces:
— Useful for network performance prediction of production HPC applications
— Trace size can be large for long running or communication intensive applications
— Potential to capture computation-communication interplay
— Require accurate simulation of MPI operations
— Simulation results can be complex to analyze

= Intel SWM Online Workloads:
— Accurate workload representations
— Decoupled from original application
— Portable to arbitrary simulation environments

— Generates traffic on-the-fly 54

DUMPI MPI TRACE LIBRARY

» Provides trace collection and replay tools for MPI based applications

= Trace collection is simple — link the MPI application with libdumpi

» Trace can be replayed using libundumpi utility

» Libundumpi provides callbacks you can use when MPI operations are replayed
» Preserves the causality order of MPI operations

= Captures detailed statistics for each MPI operation call

55

CAPTURING APPLICATION TRACES WITH DUMPI

» Repository can be cloned at:
— git clone https.//qgithub.com/sstsimulator/sst-dumpi.qit

» Configure and build using any MPI compiler

» Make sure to use ‘—enable-libdumpi’ when configuring

= Once installed, simply add -L$(DUMPI_INSTALL) -Idumpi’ in your application
» DUMPI traces will be generated automatically with each application run

= Naming convention: dumpi-yyyy.dd.mm.hh.mm.ss-MPI-RANK-ID.bin

= More information can be found at: https:/qgithub.com/sstsimulator/sst-dumpi

= HPC application traces in DUMPI format:
https://portal.nersc.qov/project/CAL/designforward.htm

56

https://github.com/sstsimulator/sst-dumpi.git
https://github.com/sstsimulator/sst-dumpi

GENERATING OTF2 TRACES (1/2)

= New Open Trace Format version 2 is supported by several tools
= ScoreP - Scalable Performance Measurement Infrastructure for Parallel Codes

= Tool suite with several libraries and helper tools
— http://www.vi-hps.org/projects/score-p/
» Inside ScoreP source directory
— CC=mpicc CFLAGS="-02" CXX=mpicxx CXXFLAGS="-02" FC=mpif90
F77=mpif77 ./configure --without-gui --prefix=<SCOREP_INSTALL>

— make && make install
— Make sure ScoreP installation’s bin directory is in PATH

» Simple case: change the application linker to
LD = scorep --user --nocompiler --noopenmp --nopomp --nocuda --noopenacc --

noopencl --nomemory <your_linker>

57

http://www.vi-hps.org/projects/score-p/

GENERATING OTF2 TRACES (2/2)

= Before running, set the following environment variables:
export SCOREP_ENABLE TRACING=1
export SCOREP_ENABLE PROFILING=0
export SCOREP_MP|_ENABLE _GROUPS=ENV,P2P.COLL,XNONBLOCK

= Turning tracing on/off: make sure these calls are synchronized
— #include <scorep/SCOREP_User.h>
— SCOREP_RECORDING_ON(); - start recoding
— SCOREP_RECORDING_OFF(); - stop recording

= During compilation, add flags:
-I$SCOREP_INSTALL/include -I$SCOREP_INSTALL/include/scorep -DSCOREP_USER _ENABLE

= Trace target options
export SCOREP _TOTAL MEMORY=256M
export SCOREP _EXPERIMENT DIRECTORY=/p/Iscratchd/<username>/...

58

TRACING OUTPUT

= scorep-* directory generated with following content:
scorep.cfg traces traces.def traces.otf2

» scorep.cfg is human readable; can be used to verify if the environment is
correctly generated

= traces.otf2 is a binary meta-file
= traces is a directory that contains the details

= Use otf2-print utility in ScoreP bin to view the traces:
otf2-print —L O traces.otf2

59

INFORMATION CAPTURED IN ATYPICAL TRACE

(E.G. IN DUMPI, OTF2)

Time stamp, t
(rounded off)
t=10
t=10.5
t=10.51
t=12.51
t=12.53
t=22.53
t=25

Operation type
MPI1_Bcast
MPI_lrecv

user_computation
MPI_lsend

user_computation
MPI_Waitall

MPI1_Barrier

Operation data (only critical
information is highlighted)

root, size of bcast,
communicator

source, tag, communicator,
req ID

optional region name -
“‘boundary updates”

dest, tag, communicator, req
ID

optional region name -
“core updates”

req IDs

communicator

60

EXAMPLE TO SHOW THE EFFECT OF

REPLAYING TRACES

Original duration

N:tv;’ r;ll'Lrge New duration Operation type
10 0.2 MPI1_Bcast
10.2 0.01 MPI_Irecv

10.21 2 user_computation
12.21 0.02 MPI_Isend

12.23 10 user_computation
22.23 0.03 MPI_Waitall

22.26 1.7

MPI1_Barrier

61

DUMPI VS OTF2

» Most of the information in the trace format is the same
» Different w.r.t. capturing of dynamically determined events: e.g. MPIl_Waitany

= DUMPI: stores all the information passed to the MPI call
— Simulation decides which request to fulfill: accurate resolution for target
systems
— If the control flow of the program can change significantly due to the ordering
of operations, simulations are not entirely correct

» OTF2: stores only the information that is used (e.g. which request was satisfied)
— Accurately mimics the control flow of the trace run
— But does not accurately represent execution for the target system

= Artifact of leveraging existing tools not originally intended for PDES!

62

INTEL SWM WORKLOADS

= Open Source version hosted at
https://github.com/codes-orqg/SWM-workloads

= Built separately: a CODES-SWM interface
has been developed

» Includes several workloads including
LAMMPS, Nekbone, Nearest Neighbor,
HACC, MILC, Incast, Point-to-Point

» Each workload is configured by its own JSON
configuration file
— Specifies size
= More CODES use information:
— https://github.com/codes-
org/codes/wiki/online-workloads

“jobs": {

"name": "StandaloneSWM",
“app": "dll",

"dll path": "apps/dll/lammps.so"”,

"size": 2048,

“"time": 0O,

“"cfg":

“num_x_replicas”: 3,
“num_y_replicas": 3,

“num_z_replicas”: 3,

“"num_time_steps”: 30,

"req_vc" : O,

“"resp_vc" : 1,

“"router_freq" : 800e6,

"cpu_freq" : 4e9,

“cpu_sim_speedup” :

63

https://github.com/codes-org/SWM-workloads
https://github.com/codes-org/codes/wiki/online-workloads

SIMULATING MPI

MPI SIMULATION

» Matching semantics and standard has to be followed for a correct simulation
— So obviously done

» Eager — Rendezvous protocol
— Cutoff can be specified in the config

= Library call overheads handled using a constant cost

= Collectives:
— OTF2 based simulations implements them internally
— DUMPI based simulations use Cortex

65

TRANSLATING MPI CALLS USING CORTEX

» Internally most MPI implementations support collectives by translating into point
to point

= Cortex comes with a set of translation functions to convert collectives into point
to point using MPICH algorithms

= When linked with DUMPI and CODES, Cortex translates MPI collectives into
point to point sends/receives (simulated by CODES)

= Cortex can also be used to implement your own translation functions (e.g.
collective algorithms)

= Cortex tutorial is available at : https://xqitlab.cels.anl.gov/mdorier/dumpi-
cortex/wikis/home

66

https://xgitlab.cels.anl.gov/mdorier/dumpi-cortex/wikis/home

CODES, CORTEX AND DUMPI INTERACTION

MPI Collective calls

MPI
send/recv/w

Translated

Cortex

sends/recvs

CODES

MPI Simulation
Layer

>

_l/’

Model-net layer

~~

Network Models

67

MPI TRANSLATION WITH CORTEX

= To enable collective translation, install Cortex and reconfigure CODES with
Cortex

= Cortex available for download: git clone
https://xqgitlab.cels.anl.gov/imdorier/dumpi-cortex.qit

" cmake .. -G "Unix Makefiles" -DMPICH FORWARD:BOOL=TRUE -
DCMAKE INSTALL PREFIX=S$SHOME/CODES/install/cortex -
DDUMPI ROOT=$HOME/CODES/install/dumpi

= See instructions at: https://xqitlab.cels.anl.gov/codes/codes/wikis/codes-
cortex-install

» Use —with-cortex=/path/to/cortex/install option

68

https://xgitlab.cels.anl.gov/mdorier/dumpi-cortex.git
https://xgitlab.cels.anl.gov/codes/codes/wikis/codes-cortex-install

N A NUTSHELL: REPLAYING A SINGLE APPLICATION TRACE

./bin/model-net-mpi-replay —--sync=1 --disable compute=1 --
workload type="dumpili" --workload file=dumpi-
2014.03.03.14.55.50- —-—num net traces=1728 -- modelnet-test-
dragonfly-edison.conf

= Runtime options

— --workload_type: “dumpi” or “online” for SWM

— --num_net traces : Number of input network traces

— --workload_file: DUMPI trace file

— Network configuration file: Any of the network files (number of simulated
ranks > number of ranks in trace)

— --Ip-io-dir (optional): Generates detailed network counters and statistics

— --lp-io-use-suffix (optional): Generates a unique directory per run

— --disable_compute (optional): disable any compute time between MPI events

— --workload _conf file: for SWM, specifies name of workload to be used

» For running parallel simulations, use mpirun and —sync=3 69

SIMULATING MULTIPLE JOBS ON THE NETWORK

REPLAYING MULTIPLE JOBS

./src/network-workloads/model-net-mpi-replay --sync=1 --
disable compute=1 --workload type="dumpi" --
workload conf file=multiple-workloads.conf —-alloc fil --

modelnet-mpi-test-dragonfly.conf

* For multiple jobs, two of the arguments are different:
— Workload_file: Has information on the dumpi/SWM traces for each application

— Alloc_file: List of simulated MPI ranks to be assigned to each job

71

EXAMPLE WORKLOAD FILE

216 /path/to/AMG/df_AMG_n216_dumpi/dumpi-2014.03.03.14.55.23~
125 /path/to/Multigrid/MultiGrid_C_n125_dumpi/dumpi-2014.03.06.23.48.13~
100 /path/to/Crystal_Router/100/dumpi--2014.04.23.12.12.05~

» Left column: Number of application ranks per job

» Right column: Path and prefix of DUMPI traces for each job — or name of SWM
— Combination SWM and Dumpi slated for future
— Currently can only combine DUMPI+DUMPI/Synthetic and
SWM+SWM/Synthetic

72

EXAMPLE JOB ALLOCATION FILE

12345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 5

6 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

= List of MPI ranks for each job
» There is a job entry per line
= Example at the top shows job placement being done in a linear scheme

= Example below shows job placement in a random fashion (assumes one rank
per node).

R ey’ 6518 2522 3963 4851 7551 4196 2343 6285 5142 2083 7565 8172 6737
7502 2579 6069 7474 5688 3926
834 3606 5076 7593 8038 3962 7194 2161 6692 4560 116 5981 3311 6857 5552 9 4101 7213 2022 2701

7237 1584 4716 1978 8045 6677 3721 666 2658 4221 7758 904 4581 5872 4549 6771 4490 8015 5013
4883 3696 4955 3196 4783 2410 1570 1548 5092 5457 3958

73

GENERATING JOB ALLOCATIONS USING
DIFFERENT SCHEMES

= Multiple schemes to map jobs onto the network
— Randomly selected nodes
— Contiguous or linear
— Randomly selected switches (ranks ordered on nodes attached to a switch)
— Clustered placement

= Scripts can be used to generate job allocation files with any of the above
schemes

= CODES keeps track of the job ID and provides it in simulation output
= Some python scripts can be found in scripts/allocation _gen

74

SESSION lll: STORAGE MODELS AND SYNTHETIC
TRAFFIC GENERATION

GOALS OF THE SESSION

» How to do storage placement on networks?
» How to generate background network traffic?
» Using model-net API

» PDES and Networks Internal

» Continue with hands on exercises

76

STORAGE PLACEMENT ON INTERCONNECTS

STORAGE PLACEMENT ON HPC SYSTEMS

_ BG/P Tree Ethernet InfiniBand Serial ATA

... — | |
Software =
Example burst
buffer placement on
EE a Blue Gene system

— | |

Compute nodes 10 nodes File servers Enterprise storage

| Group | Chassis Network nodes: - Burst buffer DCompute node Network links:
L : :

/ Router / Router / r \ Router \ Router \
| { | | | |
Router Router Router Router

* Image credit: On the role of burst buffers in Leadership class storage system by N. Liu et al. in MSST 2012

Local (row)

Local (column)

Global

Example burst
buffer placement on
a dragonfly system

Router

78

MODELING BURST BUFFER WITH CODES

= General purpose model for read and write operations
= Concurrent, pipelined RDMA requests

= Comprises of the following:
— a storage manager
— a disk/local storage model
— Aresource tracker

» Placement of storage over the network can be modified using the network config
file

79

PROTOCOL FOR WRITE OPERATIONS

Compute Node
LP

1. Write Requ

est

Burst Buffer Model

2. Reserve Disk
Space (Blocking)

4. Pull Data

Storage Manager
LP

3. Send Response

5. Write Data

80

USING THE STORAGE MODEL

codes store init req (is write, priority, obj id,
xfer offset, xfer size, codes req) -2 Forinitializing the request

codes store send req(codes req, dest id, sender, network id,
mapping context, ..) > Forsending the request

codes store send req rc > Forreverse computation

Repo available at:https://xgitlab.cels.anl.gov/codes/codes-
storage-server

81

https://xgitlab.cels.anl.gov/codes/codes-storage-server

CONFIGURING STORAGE OVER THE NETWORK

odes-store

Number of concurrent requests

req_threads = "4";

thread_buf_sz = "1000000";

memory_size = ''64000000000" ; BUffer Slze for eaCh thread
storage_size = "6400000000000"; Size Of the Memory (RAM)

Storage size (for disk/LSM)

bb_threshold = "1000000000000" ;

available="6464000000000";

Aggregate memory+storage size

es = ("0");

= ("5700.0");
= ("5700.0");

L 250,00 Disk bandwidth/seek configuration

= ("20.0");
ads = ("20.0");

82

CONFIGURING STORAGE OVER THE NETWORK

PGROUPS

DRAGONFLY_GRP
{

repetitions = "150";
codes-store="2";

lsm="2";

resource="2";

test—dummy = "2";
test—-checkpoint-client="60";

modelnet_simplenet="1";
modelnet_dragonfly_custom="64";

modelnet_dragonfly_custom_router="16":

}
EXTERNAL_STR_GRP

{
repetitions="1";
codes—-external-store="1";
modelnet_simplenet="1";

}

Two storage manager entities per 60
clients/compute nodes (Cray Cori

configuration)

Local storage model entity (disk).
One to one correspondence

Dummy nodes are to balance
node to router ratio for BB routers

A total of 64 network nodes

If the data from burst buffer needs to
be drained to the external storage

entity

83

GENERATING BACKGROUND NETWORK TRAFFIC

WHY BACKGROUND TRAFFIC?

= On production HPC systems, a significant fraction of network nodes can be
occupied

» How to introduce communication interference if a single application trace is being
replayed on the simulation?

» Running multiple traces at a large-scale can be expensive
= One solution is to mix synthetic traffic patterns and HPC application traces

85

EXAMPLE SYNTHETIC PATTERNS

= Uniform Random: A network node is equally likely to send to any other network
node (traffic distributed throughout the network)

= All to All: Each network node communicates with all other network nodes

= Nearest neighbor: A network node communicates with near by network nodes (or
the ones that are at minimal number of hops)

» Permutation traffic: Source node sends all traffic to a single destination based on
a permutation matrix

= Bisection pairing: Node 0 communicates with Node ‘n’, node 1 with ‘n-1"and so
on.

86

SYNTHETIC TRAFFIC IN CODES

(traffic == UNIFORM)
{
b—>cl = 1;
local_dest = tw_rand_integer(1lp—->rng, @, num_nodes - 1);

(traffic == NEAREST_GROUP)

{local_dest = (local_id + num_nodes_per_grp) % num_nodes;
}
(traffic == NEAREST_NEIGHBOR)
{local_dest = (local_id + 1) % num_nodes;
}

assert(local_dest < num_nodes);

global_dest = codes_mapping_get_lpid_from_relative(local_dest, group_name, lp_type_name, NULL, 0);
ns—>msg_sent_count++;
model_net_event(net_id, "test", global dest, PAYLOAD_Sz, 0.0, (svr_msg), (const voidx)m_remote, (svr_msg), (const voidx)m_local, 1p);

* Code snippet from synthetic workload generator

= Typical patterns supported are uniform random and nearest neighbor.

= All to all and stencil patterns have been tested (pending integration)

= See src/network-workloads/model-net-synthetic-custom-dfly.c and related files

GENERATING BACKGROUND TRAFFIC WITH CODES

= Communication based on uniform random traffic
= Kicks off when the main workload starts

= A notification is sent to the background traffic node to stop generating traffic once
the main workload finishes

» How to enable synthetic traffic generation?
» Simply add “synthetic” instead of DUMPI trace path in workloads config file

216 synthetic

125 /path/to/Multigrid/Multigrid_128/dumpi-2014.03.06.23.48.13-

88

PDES AND NETWORK INTERNALS

DISCRETE EVENT SIMULATION (DES)

= Computer model for a system where changes in the state of the system occur at
discrete points in simulation time

» |In this model, each component of the system being simulated is represented
independently via their

= State variables
= Virtual time
» Events - scheduled on it and by it

90

DES EXAMPLE: AIR TRAFFIC

each plane is
independently
represented

as a component, so is

arrival
schedules
800 [\ N departure arrival the runway
schedules __ _ —————7" " KRI 9:30
./ / >

Event scheduling from one component to another progresses and
coordinates virtual time across components

Example from slides by Prof Carothers, RPI

91

IMPLEMENTING DES

LN

EEEEEEEE

—

Sorted queue of events based on time stamps

= ROSS lets users define LP
(logical processes) on which
events can be scheduled with
time stamps

= Each LP can have a local state
that is accessible and modified
only when events are executed
on it

92

ROSS LP

tw_Iptype model_lps[] ={
{

(init_f) model_init,
(event_f) model _event,
(revent_f) model _event_reverse,
(final_f) model_final,
(map_f) model_map,
sizeof(state)

93

EXAMPLE OF AN EVENT FUNCTION

_ static void svr_event(
= Typical events act svr_state * ns,
based on “type” tw_bf * b,
svr_msg * m,
and “content” of the tw_lp * lp)
{
message (void)bs
switch (m->svr_event_type)
{
case REQ:
hand1@_req_event(ns, m, 1p);
break;
case ACK:
handle_ack_event(ns, m, 1p);
break;
case KICKOFF:
handle_kickoff_event(ns, m, 1p);
break;
case LOCAL:
handle_local_event(ns);

94

static void handle_req_event(
svr_state * ns,
svr_msg * m,
tw_1p * 1p)

assert(!do_pull);
svr_msg * m_local = malloc(sizeof(svr_msg));
svr_msg * m_remote = malloc(sizeof(svr_msg));

m_local->svr_event_type = LOCAL;
m_local->src = lp->gid;

memcpy(m_remote, m_local, sizeof(svr_msg));
m_remote->svr_event_type = ACK;

ns->msg_recvd_count++;

m->ret = model_net_event(net_id, "test", m->src, PAYLOAD_SZ,
0.0, sizeof(svr_msg), (const voidx)m_remote,
sizeof(svr_msg), (const voidx)m_local, 1p);
return;

95

ROSS’S LAW OF OPTIMISTIC EXECUTION: FOR
EVERY FORWARD ACTION, YOU MUST TELL ROSS
HOW TO GO BACKWARDS

static void svr_event(
svr_state x ns,

tw_bf * b,
svr_msg * m,
tw_1lp * 1p)
{
(void)b;
switch (m->svr_event_type)
{
case REQ:
hand1@_req_event(ns, m, 1lp);
break;
case ACK:
handle_ack_event(ns, m, 1p);
break;

case KICKOFF:
handle_kickoff_event(ns, m, 1p);
break;

case LOCAL:

handle_local_event(ns);

static void svr_rev_event(
svr_state * ns,

tw_bf x b,
svr_msg * m,
tw_1lp * 1p)
{
(void)b;
switch (m->svr_event_type)
{
case REQ:
handle_req_rev_event(ns, m, 1lp);
break:;
case ACK:
handle_ack_rev_event(ns, m, 1lp);
break;

case KICKOFF:
handle_kickoff_rev_event(ns, m, 1p);
break;

case LOCAL:
handle_local_rev_event(ns);
break:

static void Randle_req_rev_event (
svr_state * ns,
svr_msg * m,
tw_1p * 1p)
{
static void handle_req_event(ns—->msg_recvd_count—-;
svr_state * ns, if (do_pull){
svr_msg * m, model_net_event_rc2(lp, &m->ret);
tw_1lp * 1p) }
{ elseq
assert(!do_pull); model_net_event_rc2(1lp, &m->ret);
svr_msg * m_local = malloc(sizeof(svr_msg)); }

svr_msg x m_remote = malloc(sizeof(svr_msg));

m_local->svr_event_type = LOCAL;
m_local->src = lp->gid;

memcpy (m_remote, m_local, sizeof(svr_msg));
m_remote->svr_event_type = ACK;

ns->msg_recvd_count++;

m->ret = model_net_event(net_id, "test", m->src, PAYLOAD_SZ,
0.0, sizeof(svr_msg), (const voidx)m_remote,
sizeof(svr_msg), (const voidx)m_local, 1p);

return;
97

APPLICATION SIMULATION IN CODES

packet send packet send
message send ack/token send ack/token sen
~—— L T\

Routers

— routing tables

— data on buffers connecting
to other routers and NIC

— messages to be
transmitted

— packetization
status of messages
being transmitted

PE 0 (mpi rank or end points)
— computation tasks,
communication logs, or algorithmic

— congestion control scheme
— pending packets in each
buffer

— link bandwidth

— router delays

state

— expected messages
— pending messages
— progress overheads

— data on buffers
connecting to router
— NIC delay

— bandwidth to

\/ routers \/

~—— message arrive packet arrive
task complete ack/token send

packet arrive
ack/token arrive

98

AVAILABLE MODELS, FEATURES, AND ADDING
A NEW NETWORK MODELS

= Available: simple-net model, torus, dragonfly-(custom), fat-tree, slim fly, express-
mesh/hyperX

» Typical model consist of NIC (terminals) and switches/routers

= NICs
— Common code available for within-node, message ordering, etc
— Plugin code for individual network

= Switch/routers
— Entirely within a network model

» But, a significant fraction of node is similar for NIC plugin and switch!

99

NIC I model_net I

COMMON 2end
delegate
» Types of queues: message to NIC
= fifo size, destination,
= round-robin I Node facing
. NIC
= priority
enqueue
to a common
= Other params queue
1

* intra_bandwidth (10)
= node_copy_queues (4)

schedule next
poll event

poll common
queue

enqueue at
destination rank
at the right time

100

NIC NETWORK SPECIFIC

struct model_net_method torus_method =

{

.mn_configure = torus_configure,
.mn_register = NULL,
.model_net_method_packet_event = torus_packet_event,
.model_net_method_packet_event_rc = torus_packet_event_rc,
.model_net_method_recv_msg_event = NULL,
.model_net_method_recv_msg_event_rc = NULL,
.mn_get_1lp_type = torus_get_1lp_type,
.mn_get_msg_sz = torus_get_msg_sz,
.mn_report_stats = torus_report_stats,
.mn_collective_call = NULL,
.mn_collective_call_rc = NULL,
.mn_sample_fn = NULL,

.mn_sample_rc_fn = NULL,

.mn_sample_init_fn = NULL,
.mn_sample_fini_fn = NULL

tw_Llptype ibrus_lp =
{

(init_f) torus_init,
(pre_run_f) NULL,

(event_f) event_handler,
(revent_f) node_rc_handler,
(commit_f) NULL,

(final_f) final,

(map_f) codes_mapping,
sizeof(nodes_state),

NIC NETWORK SPECIFIC et credi

torus packet event

Has

NO wait for
packets to

ket
from router send packets
N .
as credit O Wait for
to send credit

Pick the next
packet to send

send to router
and schedule

event for next send o

CONTRIBUTING:

» Fork off on the github repository
« Add new features

« Submit a pull request!

THANK-YOU

ADDITIONAL MATERIAL

CODES INSTALLATION

INSTALLATION & SETUP 1/2

= ROSS INSTALLATION
— Download ROSS repo: git clone https://github.com/ROSS-org/ROSS
— Configure by making a build directory: cd build

— ARCH=x86 64 CC=mpicc CXX=mpicxx cmake
-DCMAKE INSTALI PREFIX=../install ../
— make —j 3 && make install

= CODES INSTALLATION

— Download CODES repo: git clone https://github.com/codes-org/codes

— ./prepare.sh

— Configure in build directory: cd build
../configure --prefix=/path/to/install CC=mpicc CXX=mpicxx
PKG CONFIG PATH=/path/to/ross/install/lib/pkgconfig

— Do both make && make tests

106

INSTALLATION & SETUP 2/2

= DUMPI INSTALLATION
— git clone https.//qgithub.com/sstsimulator/sst-dumpi
— CFLAGS="-DMPICH _SUPPRESS PROTOTYPES=1 -
DHAVE PRAGMA HP SEC DEF=1"
— ./bootstrap.sh
— ./configure --enable-libundumpi CC=mpicc --prefix=§INSTALL PATH
— Use —with-dumpi=/path/to/dumpi/install option to enable DUMPI with CODES

» OTF2 and BigSim based Tracing
— ScoreP/OTF2: http://www.vi-hps.org/projects/score-p/

— Charm++/BigSim:http://charm.cs.illinois.edu/manuals/html/bigsim/manual.html
— TraceR: https://github.com/LLNL/tracer/

= for installation details and documentation see:
— https://xqitlab.cels.anl.gov/codes/codes/wikis/home
— https.//xgitlab.cels.anl.gov/codes/codes/wikis/installation

107

http://www.vi-hps.org/projects/score-p/
https://xgitlab.cels.anl.gov/codes/codes/wikis/home

MORE ON TRACER

TRACER - A LAYER FOR CONFIGURABLE
REPLAY OF APPLICATION TRACES

Capture application
behavior by tracing runs
on existing systems

Reproducing the
execution: applications’
behavior,

job placement and
mapping, job scheduling,
MPI/Charm++, etc.

Simulation of traffic flow
on NICs and networks

109

DOCUMENTATION

= Distributed with TraceR source code

» README.md - getting started

» README.OTF - OTF2 installation and usage

» docs/UserWriteUp.txt — detailed workflow and usage
= utils’README - job placement and task mapping

110

INSTALLING TRACER (1/4)

» Hosted on github: https://github.com/LLNL/tracer/

= git clone and follow README.md

= Download and install ROSS
— Last verified commit provided

= Download and install CODES
— Last verified commit provided

111

https://github.com/LLNL/tracer/

INSTALLING TRACER (2/4)

» Choose a trace format: BigSim or OTF2

» For BigSim, download Charm++
— git clone http://charm.cs.uiuc.edu/gerrit/charm

= Assuming MPI is available, install two flavors of Charm++
— For compiling codes for trace generation
/build bgampi mpi-linux-x86_64 bigemulator —O2
— For compiling TraceR
/build charm++ mpi-linux-x86 64 bigemulator --with-production

112

http://charm.cs.uiuc.edu/gerrit/charm

INSTALLING TRACER (3/4)

= For OTF2, download ScoreP
— http://www.vi-hps.org/projects/score-p/

» Inside ScoreP source directory
— CC=mpicc CFLAGS="-02" CXX=mpicxx CXXFLAGS="-02" FC=mpif90
F77=mpif77 ./configure --without-gui --prefix=<SCOREP_INSTALL>
— make && make install

— Make sure ScoreP installation’s bin directory is in PATH

113

http://www.vi-hps.org/projects/score-p/

INSTALLING TRACER (4/4)

= |In tracer/Makefile.common
» Set ROSS to ROSS’s installation directory
» Set CODES to CODES'’s installation directory

= If using BigSim,
— Set CHARMPATH
— SELECT_TRACE =-DTRACER_BIGSIM_TRACES=1

= If using OTF2,
— Make sure ScoreP installation’s bin directory is in PATH
— SELECT_TRACE =-DTRACER_OTF_TRACES=1

» make: generates traceR executable

114

MORE ON GENERATING OTF2 TRACES

= ScoreP macros can be used to mark special regions
— SCOREP_USER _REGION_BY_NAME_ BEGIN(regionname,
SCOREP_USER_REGION_TYPE_COMMON)
— SCOREP_USER_REGION_BY_NAME_END(regionname)

= Printing simulation time at locations of interest:

= Region name with prefix TRACER_WallTime_<any name> prints current time
during simulation with tag <any_name>.

115

MORE ON GENERATING OTF2 TRACES

= Simulation time looping:

= Region name TRACER Loop can be used to mark beginning and ending of a
code loop (currently once)

= |In future, region names will be used for
— Targeted kernel time modifications
— Targeted message size modifications

116

CODE EXAMPLE FOR TRACING WITH OTF2

while(iterations < MAX_ITER) {

int main(int argc, char **argv) {
MPI_Init(&argc, &argv);
SCOREP_RECORDING_OFF();
/initializaton code
MPI1_Barrier(MPI_COMM_WORLD);
SCOREP_RECORDING_ON();

SCOREP_USER_REGION_BY_NAME_BEGIN
("TRACER_Loop", SCOREP_USER_REGION_TYPE_COMM(C

if(!myRank)

SCOREP_USER_REGION_BY NAME_BEGIN
("TRACER_WallTime_Total", SCOREP_USER_REGION_TYP

startTime = MPI_Wtime();

If(myRank == 0)

SCOREP_USER_REGION_BY_NAME_BEGIN

("TRACER_WallTime_InLoop",
SCOREP_USER_REGION_TYPE_COMMON);

/lkernel and other code

}

SCOREP_USER_REGION_BY_NAME_END
) '(\'I')T_RACE R_Loop");

MPI_Barrier(MPI_COMM_WORLD);

endTime = MPI1_Wtime();
- COMMON);
if('fmyRank)

SCOREP_USER_REGION_BY_NAME_END
("TRACER_WallTime_Total");

SCOREP_RECORDING_QFE();

117

RUNNING TRACER

= A typical run command:
mpirun -np 8 ./traceR --sync=3 --nkp=16 --extramem=100000 --max-opt-
lookahead=1000000 --timer-frequency=1000 —Ip-io-dir=stats-dir -- torus.conf
tracer_config

» In green, ROSS options
— --nkp : how many KPs to create per PE = total LPs/<-np>
— --extramem : how many ROSS messages to allocate = 100K should work for
most cases
— --max-opt-lookahead : optimistic leash = 1 millisecond is a good number

118

RUNNING TRACER

= A typical run command:
mpirun -np 8 ./traceR --sync=3 --nkp=16 --extramem=100000 --max-opt-
lookahead=1000000 --timer-frequency=1000 —Ip-io-dir=stats-dir -- torus.conf
tracer_config

» TraceR-CODES options
— --timer-frequency : how frequently to print progress of task completion;
optional, default = 5000
— --lp-io-dir : where to write output stats; optional; code fails if the directory
exists to avoid over-writing
— torus.conf : network config file
— tracer_config : TraceR config file

119

TRACER PARAMETER IN NETWORK FILE

= server in MODELNET_ GRP
— Number of processes associated with a switch
— Assigned in a round-robin manner to nodes

» soft_delay in PARAMS
— Approximate overhead of making an MPI/runtime call
— In nanoseconds

* rdma_delay in PARAMS
— Overhead of using RDMA call in rzv protocol, in nanoseconds

= eager_limit in PARAMS
— Switch over point between eager and rzv protocols, in bytes

= copy_per_byte in PARAMS
— Copy cost for a byte, in nanoseconds per byte

120

TRACER CONFIG FILE (1/2)

Format:

<global map file> or NA

Hjobs

<path to job traces> <task mapping file or NA> <#ranks> <loop iterations>

Example:

global_map.bin

2

traces-64/traces.otf2 job0 64 1
traces-32/traces.otf2 job1 32 1

121

TRACER CONFIG FILE (2/2)

= At the end of file,

» E <job id> scale_all <scale factor>
— Inverse scales computation time by the given factor
— E.g.: E O scale_all 40

» S <job id> <msg size> <replace by>
— Change the size of message
— Under review, to be merged

122

SAMPLE OUTPUT

PEO - LP_GID:0 : START SIMULATION, TASKS COUNT: 245611, FIRST TASK: 0, RUN TIME TILL
NOW=70.000000 s, CURRENT SIM TIME 1.005877

[00 :time at task 0/245611 0.000000]

[0 0: Begin TRACER WallTime_ MainLoop 0.000001]
[00 :time at task 100/245611 0.000663]

[0 0: Begin TRACER WallTime NextTrajec 0.001175]
[00 : time at task 200/245611 0.003104]

[0 0 : time at task 245600/245611 1.485123 |
[00: End TRACER WallTime NextTrajec 1.485264 |
[00: End TRACER_WallTime MainLoop 1.485265 |

123

CASE STUDIES WITH CODES-TRACER

Observed bandwidth (GB/s)

Evaluating Methods for Effective Fat-tree Utilization

Quantify the effectiveness of multiple network rails in increasing network performance
Evaluate jobfplacement methodologies and routing choices to maximize the
throughput of a multi-rail fat-tree network

Investigate network performance gains offered by multiple rails in response to
increased compute performance of high-density compute nodes

Improve routing, injection and job allocation design choices of multi-rail fat-tree
networks to maximize individual application and system wide performance

Fat-tree strong scaling rail performance

~[| = Multi-application
- i’ . workload
% { = Linear system
| improvement

—] |
e
—F 3

—" i
B
Hi
——

10°} 1 [_Isingle-Rail
: | |[=—puakRai Related papers
s Pt = Jain et al. Predicting the Performance Impact of
— = Link-Speed Different Fat-Tree Configurations (To appear in
Sys‘tem AMG CrystaI‘Router Mult;grid SuperCom put|ng 201 7)
= Wolfe et al. Preliminary Performance Analysis of

Multi-Rail Fat-tree Networks (CCGRID 2017)
125

o
S

(a) Random Group
proxies A

| MiniFE has much
| higher traffic on both
| global and local links.

Global link saturation
|

Random router job

placement causes =
: . oS

high saturation on *©

non-minimal routes S

between AMG and
AMR Boxlib.

Very few non-minimal h
| routes between AMG |
| and AMR Boxlib with }
! random group job |
| placement. !

420us (o]

AMR Boxlib

Local link saturation

High usage of global
links for traffic
between terminals
with the same job .
RZ _-z"

-

3 5\)'“‘“

Hybrid job placement
significantly reduces the

saturation on non-minimal |
routes for AMR Boxlib. i

Avg. packet I

1300us (o]

ISUALIZING HPC INTERCONNECT PERFORMANCE

(c) Hybrid

e
\‘5"\6

Local links have !
low traffic and |

AMR Boxlib | saturation for AMR |
atency Boxlib with hybrid |
54us job placement. }

Comparing job placement schemes using the CODES simulation framework of the high-radix dragonfly network running
the Algebraic Multigrid Solver (AMG), AMR BoxLib and MiniFE applications. The visualizations show the aggregated

(d) Application Performance

Hl ViniFE

AMG

S AMR Boxlib

twork links.

I

} Random router job placement
--:>1 lets AMG gains performance
~ | at the cost of AMR Boxlib.

30.0

15.0

Avg. Packet Latency (microseconds)

* lower is better

T |
} Hybrid placement is better than random }
} group placement for all three applications. !

Application Ranks Data Comm. Pattern
AMG 1728 1.2GB 3D nearest neighbor
AMR Boxlib 1728 2.2GB Irregular and sparse
MiniFE 1152 147GB | Many-to-many

« K Lii M.

Mubarak, R. Ross et al. “Visual

Analytics Techniques for Exploring the
Design-space of large-scale high-radix

networks”, to appear in IEEE Cluster 2017

126

ACCELERATING COLLECTIVE COMMUNICATION ON
DRAGONFLY NETWORKS

» Need to design new scalable collective algorithms for high-radix interconnects

» |nvestigate the parameter space of these algorithms, and the effects of cross-
application communication interference

» Designed/evaluated several collective algorithms for Dragonfly networks

(a) Tree (Non topology aware) (b) Local Links First (topology-aware)

(c) Global Links First
M. Dorier et al. “Evaluation of Topology-Aware Broadcast Algorithms for Dragonfly ...

Networks ”’, IEEE Cluster 2016

USING MODEL-NET API

CONFIGURATION

» Model-net— An abstraction layer on top of network models — topology details are
specified through the config files

» A valid network configuration file — examples can be found in the repo
* Network model must be registered — model net register

= CODES mapping must be setup — codes mapping setup

» Use model-net function calls — model net event(network id, source,
destination, message size,..)

» Example of using model-net — tests/model-net-test.c

129

