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LINKS

§ Slides available for download at:
– http://nikhil-jain.github.io/codes-hoti.pptx

§ QoS Slides available for download at: 
– https://nmcglo.com/public-talks/df-dfp-qos-isc19.pdf 

§ CODES Repo and Wiki:
– https://github.com/codes-org/codes

§ Tracer Repo:
– https://github.com/LLNL/TraceR

§ NERSC DOE Design Forward DUMPI Traces:
– https://portal.nersc.gov/project/CAL/designforward.htm
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TUTORIAL OUTLINE

§ Session I: Introduction to CODES and TraceR, and their use for simulations

§ Session II: Replaying HPC workloads, simulating MPI operations and collectives 

§ Session III: Storage simulations, Misc
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PROJECT CONTRIBUTORS
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§ Argonne National Laboratory, Mathematics and Computer Science
§ Lawrence Livermore National Laboratory, Center for Applied Scientific Computing
§ Nvidia, Compute Arch
§ Rensselaer Polytechnic Institute, Computer Science
§ University of Arizona, Computer Science
§ UC Davis, Computer Science
§ University of Maryland, Computer Science



SESSION I: INTRODUCTION, CASE STUDY, AND 
INTERCONNECT MODELS

5



GOALS OF SESSION I

§ Introduction
§ Case study
§ Features
§ HPC Interconnect models
§ Configuring interconnect simulations
§ Interpreting simulation output
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INTRODUCTION & BACKGROUND
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BUILDING BLOCKS OF HPC INTERCONNECTS

§ HPC performance is sensitive to the interconnect latency 
§ Interconnects are custom built to achieve maximum throughput
§ Basic Components:

– Network topology: Arrangement of network nodes and links to maximize 
performance. 

– Routing: The protocol using which a packet selects its next destination. 
Depends on the underlying network topology. 

– Flow control: Allocating network links and buffers to packets as they traverse 
through the network. Usually independent of the underlying topology and 
routing protocols. 
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WHY HPC INTERCONNECT SIMULATION?

§ HPC interconnects are complex!
§ Need to look at several factors that influence network performance:

– Interconnect Topology
– Routing
– Quality of Service
– Job placement policies
– Inter-job and intra-job interference
– Storage placement on network

§ Improved performance is contingent on an optimal combination of the above 
factors
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ROSS: PARALLEL DISCRETE-EVENT SIMULATOR
§ Discrete event simulation (DES): a 

computer model for a system where 
changes in the state of the system occur 
at discrete points in simulation time

§ Parallel DES allows execution of 
simulation on a parallel platform

§ Rensselaer Optimistic Simulator System 
(ROSS) provides PDES capability for 
CODES
– Optimistically schedules events. 

Rollback realized via reverse 
computation

– Logical processes (LPs) model state 
of the system
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CODES: MODELING & SIMULATION FRAMEWORK
§ Accelerate HPC system co-design by 

providing a detailed simulation of 
HPC interconnects, storage, 
workloads and surrounding 
environment

§ Couple best-of-breed parallel discrete 
event simulation with experts in 
interconnects and storage architecture 
design

§ Incrementally develop HPC simulation 
capability, validating approach and 
components along the way

§ Complement experimentation on real 
systems Figure: CODES Architecture Diagram
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TRACER: REPLAYING MPI TRACES

§ OTF2 traces for MPI
§ BigSim traces for Charm++, AMPI
§ Default and user-defined job placement and task mapping
§ MPI point-to-point semantics and protocols
§ Inbuilt collectives: tree based bcast, reduce, allreduce, and barrier; message size 

based algorithms for alltoall and allgather
§ Simulation time scaling
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FEATURES: HPC SIMULATIONS
§ Packet-level simulations of HPC interconnect topologies 
§ Trace-driven analysis (DUMPI+OTF2), synthetic workloads
§ Multiple jobs can be replayed on the network
§ Different job placement schemes can be used 
§ Multiple ranks mapped to network nodes can be used
§ Detailed statistics generation
§ MPI collective operations can be simulated
§ General purpose storage model that uses concurrent, pipelined RDMA 

read/write requests (simulating burst buffers/SSD)
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SIMULATION STACK
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OTF2

TraceR

CODES System Models

BigSim OthersDUMPI

Synthetic 
workloads

ROSS

MPI Simulation 
layer

Any machine with MPI support

Comm 
Patterns Workloads: Session II

System Models in Session I & III



HPC INTERCONNECT MODELS
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STRUCTURE OF MODERN INTERCONNECT 
TOPOLOGIES
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A 3-ary 3-d Torus network
A 3-level pruned Fat Tree with 64 compute nodes

Torus Network
• Homogeneous structure
• Dedicated routers per compute node

Fat tree Network
• Static Routing
• Job placement impacts 

inter-job interference

Dragonfly Class 
Networks
• Groups with All-To-All 

Global Connections
• Flexible Routing
• Strong resilience to 

inter-job interference

Slim Fly Network
• Cost-Effective
• Low-Diameter-High-

Path-Diversity
• Complex Global       

Link Structure

A 7 Group Dragonfly

An 8 Group Slim Fly



OVERVIEW OF NETWORK MODELS

§ Multiple network models are supported – 1D/2D Dragonfly, Megafly, Slim Fly, Fat 
Tree, Express Mesh, Arbitrary graphs, Torus…

§ Abstraction layer ‘model-net’ sits on top of network models
– Breaks messages into packets
– Offers FIFO, round robin and priority queues

§ To try different networks, simply switch the network configuration files!
§ Storage models, MPI simulation and workload replay layers are independent of 

the underlying networks
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SIMPLE NET NETWORK MODEL 

§ A latency/bandwidth model where message is directly sent from source to 
destination 

§ Uses infinite size queuing 
§ Easy setup– uses a startup delay and link bandwidth for configuration
§ Mostly for debugging/testing purposes-- Can be used as a starting point when 

replaying MPI traces 
§ It can be used as a baseline network model with no contention and no routing
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CONFIGURING SIMPLE-NET LOGP MODEL
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For mapping entities on ROSS MPI 
processes

Messages are broken into packets 
by the model-net layer

ROSS specific parameter (event size)

Startup delay in ns

Link bandwidth in MB/s (one link 
between each pair of nodes)

Configuration file can be found in codes/tests/conf/modelnet-test.conf



RUNNING A SIMPLE-NET LOGP MODEL

§ ./tests/modelnet-test --sync=1 -- tests/conf/modelnet-
test.conf

§ A simple test in which a simulated MPI rank sends message to the next rank, 
which replies back 

§ Continues until a certain number of messages is reached
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DRAGONFLY NETWORK MODEL

§ Multiple forms of routing are supported: minimal, adaptive, non-minimal and 
progressive adaptive

§ Packet based simulation with credit based flow control
§ Uses multiple virtual channels for deadlock prevention

21
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CONFIGURING DRAGONFLY NETWORK MODEL
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nw-lp is a simulated MPI 
process

A simulated dragonfly 
network node

A simulated dragonfly 
network router

• For simulating multiple MPI processes per node à nw-lp=num-procs * number 
of network nodes

• Self messagesà messages sent to the same network node 
• Overhead for sending self message can be configured

Configuration file can be found in codes/src/network-
workloads/dragonfly-custom



CONFIGURING DRAGONFLY NETWORK MODEL
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Router arrangement within a group. 
Should match the input network 
configuration

Buffer size of virtual channels can be 
configured

Number of compute nodes per router 
is configurable

Network configuration files – can be 
custom generated (see scripts/gen-
cray-topo/README.txt). 



RUNNING A DRAGONFLY NETWORK 
SIMULATION
§ Download the traces: 

– wget https://portal.nersc.gov/project/CAL/doe-miniapps-
mpi-traces/AMG/df_AMG_n1728_dumpi.tar.gz

§ Run the simulation: 
– ./src/network-workloads/model-net-mpi-replay --sync=1 --
disable_compute=1 --workload_type="dumpi" --
workload_file=df_AMG_n1728_dumpi/dumpi-
2014.03.03.14.55.50- --num_net_traces=1728 --
../src/network-workloads/conf/dragonfly-custom/modelnet-
test-dragonfly-edison.conf
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FAT TREE NETWORK MODEL
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Full 3-level k=8 Fat-Tree with 128 compute nodes

§ Can simulate two and three level fat tree 
networks

§ Width of the tree (number of pods) can also 
be configured

§ Two forms of routing are supported: 
– static: uses destination-based look-up 

tables 
– adaptive: selects least congested output 

port
§ Packet based simulation with credit based 

flow control



FAT TREE NETWORK CONFIGURATIONS
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SC’17, Nov 12–17, Denver, CO, USA

a) Single rail single plane (full) b) Single rail single plane (tapered) c) Dual rail single plane d) Dual rail dual plane

Figure 1: Examples of design options for fat-tree networks.

�e primary contributions of this work are:

• Advances in TraceR/CODES framework that enable low-e�ort,
accurate simulations of production applications.

• Validation of TraceR/CODES framework for many parallel
codes including production applications.

• Performance and interference predictions for production ap-
plications, libraries, and multi-job workloads on a range of
potential future network designs.

We also assess the suitability of di�erent fat-tree con�gurations
for the applications and workloads simulated in this paper. Note
that the choice of test problems can potentially alter the character-
istics of many applications, and hence some of the results presented
may not apply for test problems that signi�cantly alter the behavior
of an application.

2 FAT-TREE NETWORKS
�e fat-tree topology is a tree-based topology in which bandwidth
of edges increases near the top (root) of the tree [29]. Practical
deployments of fat-tree in most supercomputers resembles folded-
Clos topology as shown in Figure 1(a). In this set up, many routers of
same radix are grouped together to form core switches and provide
high bandwidth. �e fat-tree shown in Figure 1(a) is a full fat-tree:
the total bandwidth within a level does not decrease as we move
from nodes connected to the leaf switches towards higher levels.

In order to reduce the cost of the network, tapering can be de-
ployed to connect more nodes per leaf switch (Figure 1(b)). �is
reduces total bandwidth at higher levels but also lowers the number
of switches and links required to connect the same number of nodes
in comparison to the full fat-tree.

On the other hand when higher bandwidth is desired, each node
can be provided multiple ports (rails) to inject tra�c at a higher rate
into the leaf switches. �e multiple ports can either be connected
to switches in the same plane as shown in Figure 1(c) or to disjoint
planes as shown in Figure 1(d). In both cases, fewer nodes can
be connected using the same quantity of network resources in
comparison to the single rail fat-tree. Either of these con�gurations
can also be tapered to retain high injection bandwidth at the nodes,
but reduce cost by reducing the bandwidth at the higher levels.

Currently, all of the above con�gurations are o�ered by multiple
vendors, e.g. Mellanox and Intel. In addition, several options are
available for bandwidth of individual links – FDR (56 Gbps), EDR
(100 Gbps), HDR (200 Gbps), etc. Multiplicity of these optionsmakes
the task of �nding the most suitable con�guration for HPC centers
and applications di�cult. We address this challenge by showing that

Table 1: Fat-tree con�gurations currently available.

Con�g Link bandwidth #rails #planes Tapering

SR-EDR 100 Gbps 1 1 1:1
DRP-T-EDR 100 Gbps 2 2 2:1
DRP-EDR 100 Gbps 2 2 1:1
SR-HDR 200 Gbps 1 1 1:1
DR-T-HDR 200 Gbps 2 1 2:1
DR-HDR 200 Gbps 2 1 1:1

simulations of applications on available con�gurations (Table 1)
can provide key insights and reliable data points critical to this
decision making process.

3 APPLICATION CHARACTERISTICS
In this section, we brie�y describe the codes used in this study
and analyze their communication characteristics. �e motivation
for such an analysis is two-fold. First, it helps understand the
performance trends observed for various codes on di�erent network
con�gurations. Second, it can be used to �nd generic trends in
impact of network con�gurations based on speci�c results observed
for di�erent applications.

�e codes used in this study include applications and libraries
that are either run in production at HPC centers (Hypre, Mercury,
MILC, ParaDiS, pF3D, Qbox), or represent codes runs in production
(Atratus). �ese codes span a wide range of physics and mathe-
matical domains including Monte Carlo, �rst-principles molecular
dynamics, transport, plasma interactions, structure and unstruc-
tured grids, and sparse linear algebra.
Hypre [21] is a parallel linear solver library developed at LLNL
and is used by many production applications. For this study, we use
the Algebraic Multigrid (AMG) Solver on a 2D di�usion problem
using structured Adaptive Mesh Re�nement (AMR). We ran a weak
scaling problem so the number of mesh points is proportional to
the number of MPI ranks. �e tests were set up within a larger
application code but tracing was limited to the operations taking
place during the Hypre setup and solve phases.
Atratus extendsMULARD [6], a high order, �nite element based 3D
unstructured mesh multigroup radiation di�usion code, by includ-
ing more advanced physics and discretizations. It is used primarily
as a research tool to explore future programming paradigms with
data �ow and computations important to LLNL applications. Atra-
tus uses MFEM [5] which invokes Hypre solvers but they are more
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§ Tapering can be used to connect more nodes to the leaf switches
– Reduces the bandwidth, switches and links at higher level

§ To get higher bandwidth, nodes can connect to multiple ports (multi-rail) in one 
or more plane (multi-plane)
– These configurations can also be tapered to reduce switches, links at 

higher levels 
§ Model supports configurations for multiple rails, multiple plane and tapering



CONFIGURING FAT TREE NETWORK MODEL
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Nw-lp is a simulated MPI 
process

A simulated fat tree 
network node

Three simulated fat tree 
network switches (one in 
each level of the network)



CONFIGURING FAT TREE NETWORK MODEL
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Switch arrangement 
should match the input 
network configuration 

Switch radix can be 
configured 

Static routing requires precomputed
destination routing tables
See: 
https://github.com/codes-
org/codes/wiki/codes-
fattree#enabling-static-routing



SLIM FLY NETWORK MODEL
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Fig. Slim Fly with q=5

§ Topology of interconnected router groups built with MMS graphs
§ The max network diameter is always 2
§ Packet based simulation with credit based flow control
§ Multiple forms of routing are supported: 

– minimal: 2 virtual channels
– non-minimal: 4 virtual channels
– adaptive: 4 virtual channels
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CONFIGURING SLIM FLY NETWORK MODEL
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Generator sets are set of 
indices used to calculate 
connections between routers in 
the same subgraph. They must 
be precomputed.

Router arrangement within a 
group. 



HYPER-X, EXPRESS MESH, AND TORUS

§ Express Mesh: low-diameter densely connected 
grids
– Allows for specifying connection gap
– Gap = 1 -> HyperX

§ Torus: based on a n-dimensional k-ary network 
topology
– Number of torus dimensions and length of each 

dimension can be configured
– Supports dimension order routing 

§ Uses bubble escape virtual channel for deadlock 
prevention
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ARBITRARY GRAPHS

§ Can also input arbitrarily connected graphs
– Defined using DOT format

§ Static routing is required
– Generated using OpenSM, courtesy Jens Domke
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INTERPRETING SIMULATION OUTPUT
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INTERPRETING SIMULATION OUTPUT
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Enabling lp-io-dir generates detailed network statistics files

§ Average and maximum times are reported for all the application runs 
§ Network statistics (hops traversed, latency, routing etc.) are reported for the entire network
§ Detailed statistics for each MPI rank, network node, router, port are generated using lp-io-dir option
§ --lp-io-dir=my-dir can be used to enable statistics generation (Each lp writes it statistics to a summary file)

Application level statistics e.g. time spent in overall execution, 
communication, wait operations, amount of data transferred etc.



STATISTICS REPORTED BY LP-IO
§ Dragonfly-msg-stats: 

– number of hops, packet latency, packets sent/received, link saturation time reported for 
each network node

§ Dragonfly-router-stats 
– link saturation time each router port

§ Dragonfly-router-traffic
– Traffic sent for each router port

§ Fat tree and slim fly networks have similar statistics files.
§ Mpi-replay-stats (generated for any network model): 

– bytes sent/received per MPI process 
– time spent in communication per MPI process
– Number of sends and receives per MPI process
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CASE STUDY

FIT FLY: INTERCONNECT INNOVATION THROUGH 
PARALLEL SIMULATION
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CODES is designed to help find answers to the “What If…” type 
questions in HPC Interconnection research



MULTI-PLANE NETWORKS
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Single Plane Dual Plane

§ Hand in hand with multi-rail networks
– Additional links for packet injection

§ Additional independent planes of routers
– Often sharing terminals across planes



SLIM FLY NETWORK TOPOLOGY
§ Routers in network are organized into groups
§ Each Router

– Some degree of Local connectivity
– Some degree of Global connectivity
– Some degree of Terminal connectivity

§ Guaranteed Diameter-2
§ Groups are divided into two subgraphs

– No global connections between two 
groups within same subgraph

§ Connections are determined via non-trivial 
generation method
– Makes it challenging to physically build

39



FIT FLY
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§ Multi-Planar Slim Fly Network
§ Planes share single set of terminals
§ Each plane follows same Slim Fly network 

generation method
§ Terminal to Router mapping is alternating 

mirrored on each new plane
– Increase path diversity

Slim Fly

Fit Fly



MORE RAILS = MORE THROUGHPUT
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§ Fit Fly Based on previously 
validated Slim Fly Model

§ Additional planes bring additional 
throughput

§ Observed expected increase in 
throughput with synthetic uniform 
random traffic



EXPERIMENTS OVERVIEW
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Experiment Set 1
Cross Network

Experiment Set 2
Equalized Bandwidth



NETWORK COMPARISON: AMG 1728
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Lower is better



NETWORK COMPARISON: MG 1000

44
Lower is better



DISCUSSION: NETWORK COMPARISON
§ Slim Fly performed well against state of the art Dragonfly and Megafly networks

– Possible future exascale networks
§ Fit Fly showed great resilience to high levels of interference traffic

– Beat Slim Fly by an order of magnitude

§ Slim Fly and Fit Fly networks show great promise
– Low-diameter-high-path-diversity 
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EQUALIZED BANDWIDTH 12.5GIB/S – AMG 1728

46
Lower is better



EQUALIZED BANDWIDTH 25GIB/S – AMG 1728

47
Lower is better



DISCUSSION: EQUALIZED BANDWIDTH
§ Equalizing the aggregate bandwidth across networks slightly reduced the 

advantage that Fit Fly had
– Fit Fly still pulled ahead

• Greater interference resilience
§ Additional planes of routers give less chance for any two packets to interact

– Less interference
– Less buffer wait time
– Increased Application Performance

§ More planes of cheaper routers may be a better option to single-plane-
high-bandwidth networks
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CASE STUDY: CONCLUSION
§ Fit Fly well outperforms state-of-the-art interconnects
§ More routers and planes = Less Interference
§ More routers = More Cost

– But cheaper routers and links could be used

§ CODES provides a strong environment for answering “What If…” 
questions and fostering future innovation in the field of HPC 
interconnection networks
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RUNNING INTERCONNECT SIMULATIONS

§ Checkout the exercises at the wiki link: 
https://github.com/codes-org/codes/wiki/quick-start-interconnects

50

https://xgitlab.cels.anl.gov/codes/codes/wikis/quick-start-interconnects


SESSION II: APPLICATION SIMULATION, 
WORKLOADS, MPI
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FOUR STEPS TO SIMULATIONS

1. Prototype system design
– Discussed in the previous session
– Set up using network parameters

2. Workload selection
– Depends on the use case
– Application traces
– Synthetic patterns
– Skeletons

3. Workload creation
4. Execution

52
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HPC Application 
Traces

MPI replay Network 
Simulation

Simulation Suite

Network Model 
statistics

CODES&&
Network&Models&

CODES&&
Network&workload&

component&
MPI&Simula;on&layer&

Feeds%MPI%opera-ons% Send%/Receive%
Network%messages%

Postmortem&
network&traces&

Synthe;c&traffic&
pa?erns&

CoRTex&collec;ve&
transla;on&library&

General framework for replaying traces on HPC interconnect simulation

CODES specific framework for replaying traces on HPC interconnect simulations



WORKLOADS
§ Synthetic Workloads:

– Follow specific communication pattern and a constant injection rate
– Often used to stress the network topology to identify best and worst case performance
– Examples include uniform random, all to all, bisection pairing, bit permutation
– Don’t require simulation of MPI operations 

§ HPC Application Traces:
– Useful for network performance prediction of production HPC applications
– Trace size can be large for long running or communication intensive applications
– Potential to capture computation-communication interplay
– Require accurate simulation of MPI operations
– Simulation results can be complex to analyze

§ Intel SWM Online Workloads:
– Accurate workload representations
– Decoupled from original application
– Portable to arbitrary simulation environments
– Generates traffic on-the-fly 54



DUMPI MPI TRACE LIBRARY

§ Provides trace collection and replay tools for MPI based applications
§ Trace collection is simple – link the MPI application with libdumpi
§ Trace can be replayed using libundumpi utility 
§ Libundumpi provides callbacks you can use when MPI operations are replayed
§ Preserves the causality order of MPI operations
§ Captures detailed statistics for each MPI operation call

55



CAPTURING APPLICATION TRACES WITH DUMPI
§ Repository can be cloned at:

– git clone https://github.com/sstsimulator/sst-dumpi.git
§ Configure and build using any MPI compiler
§ Make sure to use ‘—enable-libdumpi’ when configuring
§ Once installed, simply add ‘-L$(DUMPI_INSTALL) -ldumpi’ in your application
§ DUMPI traces will be generated automatically with each application run
§ Naming convention: dumpi-yyyy.dd.mm.hh.mm.ss-MPI-RANK-ID.bin
§ More information can be found at: https://github.com/sstsimulator/sst-dumpi
§ HPC application traces in DUMPI format: 

https://portal.nersc.gov/project/CAL/designforward.htm

56

https://github.com/sstsimulator/sst-dumpi.git
https://github.com/sstsimulator/sst-dumpi


GENERATING OTF2 TRACES (1/2)

§ New Open Trace Format version 2 is supported by several tools
§ ScoreP - Scalable Performance Measurement Infrastructure for Parallel Codes
§ Tool suite with several libraries and helper tools

– http://www.vi-hps.org/projects/score-p/
§ Inside ScoreP source directory

– CC=mpicc CFLAGS="-O2" CXX=mpicxx CXXFLAGS="-O2" FC=mpif90 
F77=mpif77 ./configure --without-gui --prefix=<SCOREP_INSTALL> 

– make && make install
– Make sure ScoreP installation’s bin directory is in PATH

§ Simple case: change the application linker to
LD = scorep --user --nocompiler --noopenmp --nopomp --nocuda --noopenacc --
noopencl --nomemory <your_linker>

57

http://www.vi-hps.org/projects/score-p/


GENERATING OTF2 TRACES (2/2)

§ Before running, set the following environment variables:
export SCOREP_ENABLE_TRACING=1
export SCOREP_ENABLE_PROFILING=0
export SCOREP_MPI_ENABLE_GROUPS=ENV,P2P,COLL,XNONBLOCK

§ Turning tracing on/off: make sure these calls are synchronized
– #include <scorep/SCOREP_User.h>
– SCOREP_RECORDING_ON(); - start recoding
– SCOREP_RECORDING_OFF(); - stop recording

§ During compilation, add flags:
-I$SCOREP_INSTALL/include -I$SCOREP_INSTALL/include/scorep -DSCOREP_USER_ENABLE

§ Trace target options
export SCOREP_TOTAL_MEMORY=256M
export SCOREP_EXPERIMENT_DIRECTORY=/p/lscratchd/<username>/...

58



TRACING OUTPUT

§ scorep-* directory generated with following content: 
scorep.cfg traces traces.def traces.otf2

§ scorep.cfg is human readable; can be used to verify if the environment is 
correctly generated

§ traces.otf2 is a binary meta-file
§ traces is a directory that contains the details
§ Use otf2-print utility in ScoreP bin to view the traces: 

otf2-print –L 0 traces.otf2

59



INFORMATION CAPTURED IN A TYPICAL TRACE 
(E.G. IN DUMPI, OTF2)

60

Time stamp, t 
(rounded off) Operation type Operation data (only critical 

information is highlighted)

t = 10 MPI_Bcast root, size of bcast, 
communicator

t = 10.5 MPI_Irecv source, tag, communicator, 
req ID

t = 10.51 user_computation optional region name -
“boundary updates”

t = 12.51 MPI_Isend dest, tag, communicator, req 
ID

t = 12.53 user_computation optional region name -
“core updates”

t = 22.53 MPI_Waitall req IDs

t = 25 MPI_Barrier communicator



EXAMPLE TO SHOW THE EFFECT OF 
REPLAYING TRACES

61

Original Time 
stamps Original duration New Time 

stamps New duration Operation type

10 0.5 10 0.2 MPI_Bcast

10.5 0.01 10.2 0.01 MPI_Irecv

10.51 2 10.21 2 user_computation

12.51 0.02 12.21 0.02 MPI_Isend

12.53 10 12.23 10 user_computation

22.53 2.47 22.23 0.03 MPI_Waitall

25 1 22.26 1.7 MPI_Barrier



DUMPI VS OTF2 

§ Most of the information in the trace format is the same
§ Different w.r.t. capturing of dynamically determined events: e.g. MPI_Waitany
§ DUMPI: stores all the information passed to the MPI call

– Simulation decides which request to fulfill: accurate resolution for target 
systems

– If the control flow of the program can change significantly due to the ordering 
of operations, simulations are not entirely correct

§ OTF2: stores only the information that is used (e.g. which request was satisfied)
– Accurately mimics the control flow of the trace run
– But does not accurately represent execution for the target system

§ Artifact of leveraging existing tools not originally intended for PDES!
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INTEL SWM WORKLOADS
§ Open Source version hosted at 

https://github.com/codes-org/SWM-workloads
§ Built separately: a CODES-SWM interface 

has been developed
§ Includes several workloads including 

LAMMPS, Nekbone, Nearest Neighbor, 
HACC, MILC, Incast, Point-to-Point

§ Each workload is configured by its own JSON 
configuration file
– Specifies size

§ More CODES use information:
– https://github.com/codes-

org/codes/wiki/online-workloads 63
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SIMULATING MPI
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MPI SIMULATION

§ Matching semantics and standard has to be followed for a correct simulation
– So obviously done

§ Eager – Rendezvous protocol
– Cutoff can be specified in the config

§ Library call overheads handled using a constant cost
§ Collectives: 

– OTF2 based simulations implements them internally
– DUMPI based simulations use Cortex
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TRANSLATING MPI CALLS USING CORTEX

§ Internally most MPI implementations support collectives by translating into point 
to point

§ Cortex comes with a set of translation functions to convert collectives into point 
to point using MPICH algorithms

§ When linked with DUMPI and CODES, Cortex translates MPI collectives into 
point to point sends/receives (simulated by CODES)

§ Cortex can also be used to implement your own translation functions (e.g. 
collective algorithms) 

§ Cortex tutorial is available at : https://xgitlab.cels.anl.gov/mdorier/dumpi-
cortex/wikis/home
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CODES, CORTEX AND DUMPI INTERACTION

67

DUMPI 
Application Trace

Cortex

MPI Collective calls

MPI 
send/recv/w
aits

CODES

MPI Simulation 
Layer

Model-net layer

Network Models

Translated 
sends/recvs



MPI TRANSLATION WITH CORTEX
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§ To enable collective translation, install Cortex and reconfigure CODES with 
Cortex

§ Cortex available for download: git clone 
https://xgitlab.cels.anl.gov/mdorier/dumpi-cortex.git

§ cmake .. -G "Unix Makefiles" -DMPICH_FORWARD:BOOL=TRUE -
DCMAKE_INSTALL_PREFIX=$HOME/CODES/install/cortex -
DDUMPI_ROOT=$HOME/CODES/install/dumpi

§ See instructions at: https://xgitlab.cels.anl.gov/codes/codes/wikis/codes-
cortex-install

§ Use –with-cortex=/path/to/cortex/install option

https://xgitlab.cels.anl.gov/mdorier/dumpi-cortex.git
https://xgitlab.cels.anl.gov/codes/codes/wikis/codes-cortex-install


IN A NUTSHELL: REPLAYING A SINGLE APPLICATION TRACE
./bin/model-net-mpi-replay --sync=1 --disable_compute=1 --
workload_type="dumpi" --workload_file=dumpi-
2014.03.03.14.55.50- --num_net_traces=1728 -- modelnet-test-
dragonfly-edison.conf

§ Runtime options
– --workload_type: “dumpi” or “online” for SWM
– --num_net_traces : Number of input network traces
– --workload_file: DUMPI trace file
– Network configuration file: Any of the network files (number of simulated 

ranks > number of ranks in trace)
– --lp-io-dir (optional): Generates detailed network counters and statistics
– --lp-io-use-suffix (optional): Generates a unique directory per run
– --disable_compute (optional): disable any compute time between MPI events
– --workload_conf_file: for SWM, specifies name of workload to be used

§ For running parallel simulations, use mpirun and –sync=3 69



SIMULATING MULTIPLE JOBS ON THE NETWORK
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REPLAYING MULTIPLE JOBS
./src/network-workloads/model-net-mpi-replay --sync=1 --
disable_compute=1 --workload_type="dumpi" --
workload_conf_file=multiple-workloads.conf –alloc_fil --
modelnet-mpi-test-dragonfly.conf

§ For multiple jobs, two of the arguments are different:
– Workload_file: Has information on the dumpi/SWM traces for each application
– Alloc_file: List of simulated MPI ranks to be assigned to each job
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EXAMPLE WORKLOAD FILE

72

§ Left column: Number of application ranks per job
§ Right column: Path and prefix of DUMPI traces for each job – or name of SWM

– Combination SWM and Dumpi slated for future
– Currently can only combine DUMPI+DUMPI/Synthetic and 

SWM+SWM/Synthetic



EXAMPLE JOB ALLOCATION FILE
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§ List of MPI ranks for each job
§ There is a job entry per line
§ Example at the top shows job placement being done in a linear scheme
§ Example below shows job placement in a random fashion (assumes one rank 

per node).



GENERATING JOB ALLOCATIONS USING 
DIFFERENT SCHEMES
§ Multiple schemes to map jobs onto the network

– Randomly selected nodes
– Contiguous or linear
– Randomly selected switches (ranks ordered on nodes attached to a switch)
– Clustered placement
– …

§ Scripts can be used to generate job allocation files with any of the above 
schemes

§ CODES keeps track of the job ID and provides it in simulation output
§ Some python scripts can be found in scripts/allocation_gen
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SESSION III: STORAGE MODELS AND SYNTHETIC 
TRAFFIC GENERATION
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GOALS OF THE SESSION

§ How to do storage placement on networks?
§ How to generate background network traffic?
§ Using model-net API
§ PDES and Networks Internal
§ Continue with hands on exercises 
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STORAGE PLACEMENT ON INTERCONNECTS
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STORAGE PLACEMENT ON HPC SYSTEMS

78

BG/P Tree Ethernet InfiniBand Serial ATA

IO nodesCompute nodes File servers Enterprise storage 

Burst 
Buffer

I/O Forwarding 
Software

Fig. 1: Overview of the Argonne IBM Blue Gene/P (Intrepid) computing environment and storage services. This figure highlights
how our proposed tier of burst buffers (green boxes) would integrate with the existing I/O nodes.

the system (Figure 1). With this tier of burst buffers, applica-
tions can push data out of memory and return to computation
without waiting for data to be moved to its final resting place
on an external, parallel file system. We begin (In Section II),
by describing the motivating factors that lead us to investigate
augmenting storage systems with burst buffers and present
our design. We study this storage system architecture using
the CODES parallel discrete-event storage system simulator
(described in Section III). We evaluate several common I/O
workloads found in scientific applications to determine the
appropriate design parameters for storage systems that include
burst buffers (presented in Section IV). We discuss research
related to our recent work (in Section V). We conclude
this paper (in Section VI) by enumerating the contributions
generated by our work, in particular better quantifying the
requirements of a burst buffer implementation and the degree
to which external storage hardware requirements might be
reduced using this approach.

II. MANAGING BURSTY I/O
Bursty application I/O behavior is a well-known phenome-

non. This behavior has been observed in prior studies for HPC
applications performing periodic checkpoints [10], [19], [28],
[32], [37], [43] and for the aggregate I/O activity across all
applications executing within large HPC data-centers [8], [17].
To better understand the viability of the burst buffer approach,
we need quantitative data on application I/O bursts so that we
can accurately represent this behavior in our simulated I/O
workloads. In this section, we present our analysis of bursty
application I/O behavior that we observed on a large-scale
HPC storage system. First, we analyze the most bursty and
write-intensive applications we observed over a one-month
period on a large-scale HPC system. Next, we describe how
these trends hinder the performance of current systems. Then,
we discuss how to manage this behavior through the use of
burst buffers.

A. Study of Bursty Applications
The Argonne Leadership Computing Facility maintains the

Intrepid IBM Blue Gene/P system. Intrepid is a 557 TF

leadership-class computational platform and provides access
to multiple petabytes of GPFS and PVFS external storage.
Figure 1 provides an overview of Intrepid and the external
storage services integrated with the system. Systems such as
Intrepid host a diverse set of applications from many scientific
domains, including climate, physics, combustion, and Earth
sciences. Workloads from these scientific domains are often
characterized by periodic bursts of intense write activity. These
bursts result from defensive I/O strategies (e.g., checkpoints
that can be used to restart calculations following a system
fault) or storage of simulation output for subsequent analysis
(e.g., recording time series data for use in visualization). To
quantify this behavior on Intrepid, we analyzed one month
of production I/O activity from December 2011 using the
Darshan lightweight I/O characterization tool [9]. Darshan
captures application-level access pattern information with per
process and per file granularity. It then produces a summary
of that information in a compact format for each job. In
December 2011, Darshan instrumented approximately 52% of
all production core-hours consumed on Intrepid. We identified
the four most write-intensive applications for which we had
complete data and analyzed the largest production example
of each application. The results of this analysis are shown in
Table I. Project names have been generalized to indicate the
science or engineering domain of the project.

We discovered examples of production applications that
generated as much as 67 TiB of data in a single execution. Two
of the top four applications (Turbulence1 and AstroPhysics)
illustrate the classic HPC I/O behavior in which data is
written in several bursts throughout the job execution, each
followed by a significant period of idle time for the I/O system.
The PlasmaPhysics application diverged somewhat in that it
produced only two bursts of significant write activity; the
first burst was followed by an extended idle period, while the
second burst occurred at the end of execution. The Turbulence2
application exhibited a series of rapid bursts that occurred
nearly back-to-back at the end of execution. On a per compute
node basis, the average write requests range from 0.03% to
50% of the memory size for these applications. We expect the
write request per compute node to be limited by the physical

Router Router Router Router

Router Router Router Router

RouterRouterRouterRouter

RouterRouterRouterRouter

Group Chassis Burst buffer Compute node Network nodes: Local (column) GlobalLocal (row)Network links:

* Image credit: On the role of burst buffers in Leadership class storage system by N. Liu et al. in MSST 2012

Example burst 
buffer placement on 
a Blue Gene system

Example burst 
buffer placement on 
a dragonfly system



MODELING BURST BUFFER WITH CODES

§ General purpose model for read and write operations
§ Concurrent, pipelined RDMA requests
§ Comprises of the following:

– a storage manager
– a disk/local storage model
– A resource tracker 

§ Placement of storage over the network can be modified using the network config
file
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PROTOCOL FOR WRITE OPERATIONS
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Compute(Node(
LP(

Storage(Manager(
LP( SSD(LP(
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USING THE STORAGE MODEL

§ codes_store_init_req (is_write, priority, obj_id, 
xfer_offset, xfer_size, codes_req) à For initializing the request

§ codes_store_send_req(codes_req, dest_id, sender, network_id, 
mapping_context, ..) à For sending the request

§ codes_store_send_req_rc à For reverse computation

§ Repo available at:https://xgitlab.cels.anl.gov/codes/codes-
storage-server
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CONFIGURING STORAGE OVER THE NETWORK
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Number of concurrent requests

Buffer size for each thread
Size of the Memory (RAM)

Storage size (for disk/LSM)

Aggregate memory+storage size

Disk bandwidth/seek configuration



CONFIGURING STORAGE OVER THE NETWORK
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Two storage manager entities per 60 
clients/compute nodes (Cray Cori 
configuration)

Local storage model entity (disk). 
One to one correspondence 

A total of 64 network nodes

If the data from burst buffer needs to 
be drained to the external storage 
entity

Dummy nodes are to balance 
node to router ratio for BB routers



GENERATING BACKGROUND NETWORK TRAFFIC

84



WHY BACKGROUND TRAFFIC?

§ On production HPC systems, a significant fraction of network nodes can be 
occupied

§ How to introduce communication interference if a single application trace is being 
replayed on the simulation?

§ Running multiple traces at a large-scale can be expensive
§ One solution is to mix synthetic traffic patterns and HPC application traces
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EXAMPLE SYNTHETIC PATTERNS

§ Uniform Random: A network node is equally likely to send to any other network 
node (traffic distributed throughout the network)

§ All to All: Each network node communicates with all other network nodes
§ Nearest neighbor: A network node communicates with near by network nodes (or 

the ones that are at minimal number of hops)
§ Permutation traffic: Source node sends all traffic to a single destination based on 

a permutation matrix
§ Bisection pairing: Node 0 communicates with Node ‘n’, node 1 with ‘n-1’ and so 

on.
§ …
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SYNTHETIC TRAFFIC IN CODES

87

§ Typical patterns supported are uniform random and nearest neighbor.
§ All to all and stencil patterns have been tested (pending integration)
§ See src/network-workloads/model-net-synthetic-custom-dfly.c and related files

* Code snippet from synthetic workload generator



GENERATING BACKGROUND TRAFFIC WITH CODES

§ Communication based on uniform random traffic
§ Kicks off when the main workload starts
§ A notification is sent to the background traffic node to stop generating traffic once 

the main workload finishes
§ How to enable synthetic traffic generation?
§ Simply add “synthetic” instead of DUMPI trace path in workloads config file
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PDES AND NETWORK INTERNALS
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DISCRETE EVENT SIMULATION (DES)

§ Computer model for a system where changes in the state of the system occur at 
discrete points in simulation time

§ In this model, each component of the system being simulated is represented 
independently via their

§ State variables
§ Virtual time
§ Events - scheduled on it and by it
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DES EXAMPLE: AIR TRAFFIC 
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Example from slides by Prof Carothers, RPI

Event scheduling from one component to another progresses and 
coordinates virtual time across components

each plane is 
independently 
represented 
as a component, so is 
the runway



IMPLEMENTING DES

§ ROSS lets users define LP 
(logical processes) on which 
events can be scheduled with 
time stamps

§ Each LP can have a local state 
that is accessible and modified 
only when events are executed 
on it
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E

Sorted queue of events based on time stamps

E E E E E E E



ROSS LP

tw_lptype model_lps[] = {
{

(init_f) model_init,
(event_f) model_event,
(revent_f) model_event_reverse,
(final_f) model_final,
(map_f) model_map,
sizeof(state)

},
};
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EXAMPLE OF AN EVENT FUNCTION

§ Typical events act 
based on “type” 
and “content” of the 
message
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ROSS’S LAW OF OPTIMISTIC EXECUTION: FOR 
EVERY FORWARD ACTION, YOU MUST TELL ROSS 
HOW TO GO BACKWARDS
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APPLICATION SIMULATION IN CODES
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PE 0 (mpi rank or end points)
— computation tasks, 
communication logs, or algorithmic 
state
— expected messages
— pending messages
— progress overheads

Routers
— routing tables
— data on buffers connecting 
to other routers and NIC
— congestion control scheme
— pending packets in each 
buffer
— link bandwidth
— router delays

NIC
— messages to be 
transmitted
— packetization 
status of messages 
being transmitted
— data on buffers 
connecting to router
— NIC delay
— bandwidth to 
routers

message send

message arrive
task complete

packet send
ack/token send

packet arrive
ack/token send

packet send
ack/token send

packet arrive
ack/token arrive



AVAILABLE MODELS, FEATURES, AND ADDING 
A NEW NETWORK MODELS

§ Available: simple-net model, torus, dragonfly-(custom), fat-tree, slim fly, express-
mesh/hyperX

§ Typical model consist of NIC (terminals) and switches/routers
§ NICs

– Common code available for within-node, message ordering, etc
– Plugin code for individual network

§ Switch/routers
– Entirely within a network model

§ But, a significant fraction of node is similar for NIC plugin and switch!
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NIC 
COMMON

Node facing 
NIC

model_net 
send

delegate 
message to NIC
size, destination, 

enqueue 
to a common 

queue

Going off 
node?

NO

enqueue at 
destination rank 
at the right time

poll common 
queue

schedule next 
poll event

YES
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§ Types of queues:
§ fifo
§ round-robin
§ priority

§ Other params
§ intra_bandwidth (10)
§ node_copy_queues (4)



NIC NETWORK SPECIFIC
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struct model_net_method torus_method =
{ 

.mn_configure = torus_configure, 

.mn_register = NULL, 

.model_net_method_packet_event = torus_packet_event, 

.model_net_method_packet_event_rc = torus_packet_event_rc,

.model_net_method_recv_msg_event = NULL, 

.model_net_method_recv_msg_event_rc = NULL,

.mn_get_lp_type = torus_get_lp_type, 

.mn_get_msg_sz = torus_get_msg_sz, 

.mn_report_stats = torus_report_stats, 

.mn_collective_call = NULL,

.mn_collective_call_rc = NULL,

.mn_sample_fn = NULL,

.mn_sample_rc_fn = NULL, 

.mn_sample_init_fn = NULL, 

.mn_sample_fini_fn = NULL
};



NIC NETWORK SPECIFIC
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Going off 
node?

YES
torus packet event

Has credit 
to send

NO

Pick the next 
packet to send

send to router
and schedule 

event for next send

Wait for 
credit

Has 
packets to 

send

NO Wait for 
packetsGet credit 

from router



CONTRIBUTING:
• Fork off on the github repository
• Add new features
• Submit a pull request!

THANK-YOU



ADDITIONAL MATERIAL



CODES INSTALLATION



INSTALLATION & SETUP 1/2
§ ROSS INSTALLATION

– Download ROSS repo: git clone https://github.com/ROSS-org/ROSS
– Configure by making a build directory: cd build
– ARCH=x86_64 CC=mpicc CXX=mpicxx cmake
-DCMAKE_INSTALL_PREFIX=../install ../
– make –j 3 && make install

§ CODES INSTALLATION
– Download CODES repo: git clone https://github.com/codes-org/codes
– ./prepare.sh
– Configure in build directory: cd build

../configure --prefix=/path/to/install CC=mpicc CXX=mpicxx
PKG_CONFIG_PATH=/path/to/ross/install/lib/pkgconfig

– Do both make && make tests
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INSTALLATION & SETUP 2/2
§ DUMPI INSTALLATION

– git clone https://github.com/sstsimulator/sst-dumpi
– CFLAGS="-DMPICH_SUPPRESS_PROTOTYPES=1 -

DHAVE_PRAGMA_HP_SEC_DEF=1"
– ./bootstrap.sh
– ./configure --enable-libundumpi CC=mpicc --prefix=$INSTALL_PATH
– Use –with-dumpi=/path/to/dumpi/install option to enable DUMPI with CODES

§ OTF2 and BigSim based Tracing
– ScoreP/OTF2: http://www.vi-hps.org/projects/score-p/
– Charm++/BigSim:http://charm.cs.illinois.edu/manuals/html/bigsim/manual.html
– TraceR: https://github.com/LLNL/tracer/

§ For installation details and documentation see: 
– https://xgitlab.cels.anl.gov/codes/codes/wikis/home
– https://xgitlab.cels.anl.gov/codes/codes/wikis/installation
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MORE ON TRACER



TRACER – A LAYER FOR CONFIGURABLE 
REPLAY OF APPLICATION TRACES

ScoreP - 
OTF2

TraceR

CODES

BigSim Others

Others

Capture application 
behavior by tracing runs 
on existing systems

Simulation of traffic flow 
on NICs and networks

Reproducing the 
execution: applications’ 
behavior, 
job placement and 
mapping, job scheduling, 
MPI/Charm++, etc.
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DOCUMENTATION

§ Distributed with TraceR source code
§ README.md – getting started
§ README.OTF - OTF2 installation and usage
§ docs/UserWriteUp.txt – detailed workflow and usage
§ utils/README – job placement and task mapping
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INSTALLING TRACER (1/4)

§ Hosted on github: https://github.com/LLNL/tracer/
§ git clone and follow README.md
§ Download and install ROSS

– Last verified commit provided
§ Download and install CODES

– Last verified commit provided
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INSTALLING TRACER (2/4)

§ Choose a trace format: BigSim or OTF2
§ For BigSim, download Charm++

– git clone http://charm.cs.uiuc.edu/gerrit/charm
§ Assuming MPI is available, install two flavors of Charm++

– For compiling codes for trace generation 
./build bgampi mpi-linux-x86_64 bigemulator –O2

– For compiling TraceR 
./build charm++ mpi-linux-x86_64 bigemulator --with-production
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INSTALLING TRACER (3/4)

§ For OTF2, download ScoreP
– http://www.vi-hps.org/projects/score-p/

§ Inside ScoreP source directory
– CC=mpicc CFLAGS="-O2" CXX=mpicxx CXXFLAGS="-O2" FC=mpif90 

F77=mpif77 ./configure --without-gui --prefix=<SCOREP_INSTALL> 
– make && make install

– Make sure ScoreP installation’s bin directory is in PATH
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INSTALLING TRACER (4/4)

§ In tracer/Makefile.common
§ Set ROSS to ROSS’s installation directory
§ Set CODES to CODES’s installation directory
§ If using BigSim, 

– Set CHARMPATH
– SELECT_TRACE = -DTRACER_BIGSIM_TRACES=1

§ If using OTF2,
– Make sure ScoreP installation’s bin directory is in PATH
– SELECT_TRACE = -DTRACER_OTF_TRACES=1

§ make: generates traceR executable
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MORE ON GENERATING OTF2 TRACES

§ ScoreP macros can be used to mark special regions
– SCOREP_USER_REGION_BY_NAME_BEGIN( regionname, 

SCOREP_USER_REGION_TYPE_COMMON)
– SCOREP_USER_REGION_BY_NAME_END(regionname)

§ Printing simulation time at locations of interest:
§ Region name with prefix TRACER_WallTime_<any_name> prints current time 

during simulation with tag <any_name>. 
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MORE ON GENERATING OTF2 TRACES

§ Simulation time looping:
§ Region name TRACER_Loop can be used to mark beginning and ending of a 

code loop (currently once)

§ In future, region names will be used for
– Targeted kernel time modifications
– Targeted message size modifications
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CODE EXAMPLE FOR TRACING WITH OTF2

int main(int argc, char **argv) {
MPI_Init(&argc, &argv);
SCOREP_RECORDING_OFF();

//initializaton code
MPI_Barrier(MPI_COMM_WORLD);

SCOREP_RECORDING_ON();
SCOREP_USER_REGION_BY_NAME_BEGIN

("TRACER_Loop", SCOREP_USER_REGION_TYPE_COMMON);

if(!myRank)
SCOREP_USER_REGION_BY_NAME_BEGIN

("TRACER_WallTime_Total", SCOREP_USER_REGION_TYPE_COMMON);
startTime = MPI_Wtime();
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while(iterations < MAX_ITER) {

if(myRank == 0)

SCOREP_USER_REGION_BY_NAME_BEGIN
("TRACER_WallTime_InLoop", 
SCOREP_USER_REGION_TYPE_COMMON);

//kernel and other code

}

SCOREP_USER_REGION_BY_NAME_END
("TRACER_Loop");

MPI_Barrier(MPI_COMM_WORLD);

endTime = MPI_Wtime();

if(!myRank)

SCOREP_USER_REGION_BY_NAME_END
("TRACER_WallTime_Total");

SCOREP_RECORDING_OFF();



RUNNING TRACER

§ A typical run command:
mpirun -np 8 ./traceR --sync=3 --nkp=16 --extramem=100000 --max-opt-
lookahead=1000000 --timer-frequency=1000 –lp-io-dir=stats-dir -- torus.conf
tracer_config

§ In green, ROSS options
– --nkp : how many KPs to create per PE = total LPs/<-np>
– --extramem : how many ROSS messages to allocate = 100K should work for 

most cases
– --max-opt-lookahead : optimistic leash = 1 millisecond is a good number
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RUNNING TRACER

§ A typical run command:
mpirun -np 8 ./traceR --sync=3 --nkp=16 --extramem=100000 --max-opt-
lookahead=1000000 --timer-frequency=1000 –lp-io-dir=stats-dir -- torus.conf
tracer_config

§ TraceR-CODES options
– --timer-frequency : how frequently to print progress of task completion; 

optional, default = 5000
– --lp-io-dir : where to write output stats; optional; code fails if the directory 

exists to avoid over-writing
– torus.conf : network config file
– tracer_config : TraceR config file
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TRACER PARAMETER IN NETWORK FILE

§ server in MODELNET_GRP
– Number of processes associated with a switch
– Assigned in a round-robin manner to nodes

§ soft_delay in PARAMS
– Approximate overhead of making an MPI/runtime call
– In nanoseconds

§ rdma_delay in PARAMS
– Overhead of using RDMA call in rzv protocol, in nanoseconds

§ eager_limit in PARAMS
– Switch over point between eager and rzv protocols, in bytes

§ copy_per_byte in PARAMS
– Copy cost for a byte, in nanoseconds per byte
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TRACER CONFIG FILE (1/2)

Format:
<global map file> or NA
#jobs
<path to job traces> <task mapping file or NA> <#ranks> <loop iterations>
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Example:
global_map.bin
2
traces-64/traces.otf2 job0 64 1
traces-32/traces.otf2 job1 32 1



TRACER CONFIG FILE (2/2)

§ At the end of file, 
§ E <job id> scale_all <scale factor>

– Inverse scales computation time by the given factor
– E.g. : E 0 scale_all 40 

§ S <job id> <msg size> <replace by>
– Change the size of message
– Under review, to be merged

122



SAMPLE OUTPUT

PE0 - LP_GID:0 : START SIMULATION, TASKS COUNT: 245611, FIRST TASK: 0, RUN TIME TILL 
NOW=70.000000 s, CURRENT SIM TIME 1.005877
[ 0 0 : time at task 0/245611 0.000000 ]
[ 0 0 : Begin TRACER_WallTime_MainLoop 0.000001 ] 
[ 0 0 : time at task 100/245611 0.000663 ]
[ 0 0 : Begin TRACER_WallTime_NextTrajec 0.001175 ] 
[ 0 0 : time at task 200/245611 0.003104 ]
….
….
[ 0 0 : time at task 245600/245611 1.485123 ]
[ 0 0 : End TRACER_WallTime_NextTrajec 1.485264 ]
[ 0 0 : End TRACER_WallTime_MainLoop 1.485265 ]
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CASE STUDIES WITH CODES-TRACER



125

§ Quantify the effectiveness of multiple network rails in increasing network performance
§ Evaluate job placement methodologies and routing choices to maximize the 

throughput of a multi-rail fat-tree network
§ Investigate network performance gains offered by multiple rails in response to 

increased compute performance of high-density compute nodes
§ Improve routing, injection and job allocation design choices of multi-rail fat-tree 

networks to maximize individual application and system wide performance

Related papers
§ Jain et al. Predicting the Performance Impact of 

Different Fat-Tree Configurations (To appear in 
Supercomputing 2017)

§ Wolfe et al. Preliminary Performance Analysis of 
Multi-Rail Fat-tree Networks (CCGRID 2017)

Fat-tree strong scaling rail performance

§ Multi-application 
workload

§ Linear system 
improvement

Evaluating Methods for Effective Fat-tree Utilization



VISUALIZING HPC INTERCONNECT PERFORMANCE

• K. Li, M. Mubarak, R. Ross et al. “Visual 
Analytics Techniques for Exploring the 
Design-space of large-scale high-radix 
networks”, to appear in IEEE Cluster 2017

Comparing job placement schemes using the CODES simulation framework of the high-radix dragonfly network running
the Algebraic Multigrid Solver (AMG), AMR BoxLib and MiniFE applications. The visualizations show the aggregated
network view of all the routers and network links.

(b) Random Router (c) Hybrid (d) Application Performance

Global link saturation Local link saturation Avg. packet latency
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high saturation on 
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Fig. 7: Projection views showing intra-group communication patterns
and the correlation between the saturation time of each type of
network links on a Dragonfly network with 5,256 terminals using
adaptive routing.

local links. The concentric rings (from innermost to outermost)
show the saturation time of the local links, global links, and
terminals, respectively. For nearest neighbor workload, only
one link between each pair of routers has traffic flow, as the
terminals are only sending packets to their closest neighbor.
Because of adaptive routing, we can also see some low traffic
on other local links as they are used for non-minimal route
in order to avoid congestion. For the uniform random traffic,
the terminals are randomly communicating with each other.
Since this workload is load balanced, the bundled links in the
projection view have about the same amount of traffic, and
thus showing the same color.

Using the same configuration for the projection view, Fig-
ure 8 shows a Dragonfly network of 2,550 terminals running
the Algebraic Multigrid Solver (AMG) application with 1,728
MPI ranks. The AMG applciation has a 3D nearest neighbor
communication pattern, where each terminal communicates
with three other neighboring ranks instead of communicating
to just one nearest neighbor. Therefore, more local links have
higher traffic in AMG when comparing to the nearest neighbor
traffic pattern.

In Figure 9, the projection views show the global link
traffic in a Dragonfly network of 9,702 terminals running the
uniform random workload, with the concentric rings (from
inner to outer) depict global link saturation time (color),
local link traffic and saturation time (size and color), and
terminal link saturation time, respectively. The projection view
configurations in Figure 8 and Figure 9 can be used together to
reveal both the inter-group and intra-group traffic patterns, al-
lowing visual exploration of the correlation between the traffic
patterns and the selected performance metrics. The correlation
shown in circular hierarchies of the projections view help us
gain insights into the workload characteristics and network
performance problems. Without the visual aggregation and
summary provided in the projection views, it’s difficult to see
such correlations in a large-scale network.

Fig. 8: Adaptive routing causes higher usage of local links and lower
saturation time on all type of links on a Dragonfly network of 2,550
terminals running the AMG application.

Fig. 9: Uniform random traffic on a Dragonfly with 9,702 terminals.
Adaptive routing causes higher inter-group traffic, lower local link
saturation time, and higher average hop counts and packet latency.

B. Routing Strategies

An important factor that determines network performance is
the routing strategy for sending packets. To compare routing
strategies, projection views with same configuration and visual
encoding scales provide easy comparisons of network perfor-
mance. In Figure 8, we compare the network performance
between minimal and adaptive routing strategies for the AMG
application. It is clear that adaptive routing results in high
intra-group traffic while having much lower saturation time for
all type of network links, when comparing to minimal routing.
The network performance of minimal and adaptive routing
for the uniform random workload is compared in Figure 9.
It clearly shows that adaptive routing leads to higher usage
of the global and local links than minimal routing. This is
because adaptive routing randomly selects proxy groups for

Application Ranks Data Comm. Pattern
AMG 1728 1.2GB 3D nearest neighbor
AMR Boxlib 1728 2.2GB Irregular and sparse
MiniFE 1152 147GB Many-to-many

TABLE I: Summary of Applications.
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§ Need to design new scalable collective algorithms for high-radix interconnects
§ Investigate the parameter space of these algorithms, and the effects of cross-

application communication interference
§ Designed/evaluated several collective algorithms for Dragonfly networks
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ACCELERATING COLLECTIVE COMMUNICATION ON 
DRAGONFLY NETWORKS

M. Dorier et al. “Evaluation of Topology-Aware Broadcast Algorithms for Dragonfly 
Networks ”, IEEE Cluster 2016

(a) Tree (Non topology aware) (b) Local Links First (topology-aware)
(c) Global Links First



USING MODEL-NET API
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CONFIGURATION

§ Model-net– An abstraction layer on top of network models – topology details are 
specified through the config files 

§ A valid network configuration file – examples can be found in the repo
§ Network model must be registered – model_net_register

§ CODES mapping must be setup – codes_mapping_setup

§ Use model-net function calls – model_net_event(network id, source, 
destination, message size,…)

§ Example of using model-net – tests/model-net-test.c
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